DOI QR코드

DOI QR Code

Probiotic Lactobacillus plantarum Ln4 Showing Antimicrobial and Antibiofilm Effect against Streptococcus mutans KCTC 5124 Causing Dental Caries

  • Hye Ji Jang (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Jong Ha Kim (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Na-Kyoung Lee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hyun-Dong Paik (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2023.06.01
  • Accepted : 2023.09.04
  • Published : 2024.01.28

Abstract

Dental caries has known as an infectious disease that is considered a serious global public health problem. Recently, report indicate that probiotics play a vital role in maintaining oral health. Therefore, this study aimed to evaluate the prevention effects of Lactobacillus plantarum Ln4 against dental infection by the pathogenic bacterium Streptococcus mutans KCTC 5124 through biofilm formation inhibition. To evaluate such prevention effects against S. mutans KCTC 5124, antimicrobial activity, auto-aggregation, co-aggregation, cell surface hydrophobicity, total exopolysaccharide (EPS) production rate, and biofilm formation were analyzed. Results showed that L. plantarum Ln4 showed higher antimicrobial activity than L. rhamnosus GG (LGG). In the group treated with L. plantarum Ln4, the co-aggregation (58.85%), cell surface hydrophobicity (16.75%), and EPS production rate (73.29%) values were lower than those of LGG and the negative control. Additionally, crystal violet staining and confocal laser scanning microscopy (CLSM) revealed that L. plantarum Ln4 effectively inhibited biofilm formation in S. mutans KCTC 5124. Therefore, L. plantarum Ln4 could be used in the industry as a probiotics to prevent and improve oral health.

Keywords

References

  1. Kammoun R, Zmantar T, Labidi A, Abbes I, Mansour L, Ghoul-Mazgar S. 2019. Dental caries and hypoplastic amelogenesis imperfecta: Clinical, structural, biochemical and molecular approaches. Microb. Pathog. 135: 103615. 
  2. Han KI, Jung EG, Kwon HJ, Patnaik BB, Baliarsingh S, Kim WJ, et al. 2021. Gene expression analysis of inflammation-related genes in macrophages treated with α-(1→3, 1→6)-D-glucan extracted from Streptococcus mutans. Int. J. Biol. Macromol. 166: 45-53. 
  3. Tong X, Hou S, Ma M, Zhang L, Zou R, Hou T, Niu L. 2020. The integration of transcriptome-wide association study and mRNA expression profiling data to identify candidate genes and gene sets associated with dental caries. Arch. Oral. Biol. 118: 104863. 
  4. Yue J, Yang H, Liu S, Song F, Guo J, Huang C. 2018. Influence of naringenin on the biofilm formation of Streptococcus mutans. J. Dent. 76: 24-31. 
  5. Kim HJ, Lee JH, Ahn DU, Paik HD. 2020. Anti-biofilm effect of egg yolk phosvitin by inhibition of biomass production and adherence activity against Streptococcus mutans. Food Sci. Anim. Resour. 40: 1000-1013.
  6. Shin N, Yi Y, Choi J. 2019. Hand motor functions on the presence of red fluorescent dental biofilm in older community-dwelling Koreans. Photodiagnosis Photodyn. Ther. 28: 120-124. 
  7. Lim SM, Lee NK, Paik HD. 2020. Antibacterial and anticavity activity of probiotic Lactobacillus plantarum 200661 isolated from fermented foods against Streptococcus mutans. LWT-Food Sci. Technol. 118: 108840. 
  8. Lim, SM, Lee NK, Kim KT, Paik HD. 2020. Probiotic Lactobacillus fermentum KU200060 isolated from watery kimchi and its application in probiotic yogurt for oral health. Microb. Pathog. 147: 104430. 
  9. Aarti C, Khusro A, Varghese R, Varghese R, Arasu MV, Agastian P, et al. 2017. In vitro studies on probiotic and antioxidant properties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India. LWT-Food Sci. Technol. 86: 438-446. 
  10. Food and Agricultural Organization of the United Nations and World Health Organization. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria; World Health Organization: Cordoba, Argentina, 2001. 
  11. Kimoto-Nira H, Suzuki S, Suganuma H, Moriya N, Suzuki C. 2015. Growth characteristics of Lactobacillus brevis KB290 in the presence of bile. Anaerobe 35: 96-101. 
  12. Vitali B, Minervini G, Rizzello CG, Spisni E, Maccaferri S, Brigidi P, et al. 2012. Novel probiotic candidates for humans isolated from raw fruits and vegetables. Food Microbiol. 31: 116-125. 
  13. Jeon EB, Son SH, Jeewanthi RKC, Lee NK, Paik HD. 2016. Characterization of Lactobacillus plantarum Lb41, an isolate from kimchi and its application as a probiotic in cottage cheese. Food Sci. Biotechnol. 25: 1129-1133. 
  14. Lee JE, Lee NK, Paik HD. 2020. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci. Biotechnol. 30: 97-106. 
  15. Lee NK, Han KJ, Son SH, Eom SJ, Lee SK, Paik HD. 2015. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT-Food Sci. Technol. 64: 1036-1041. 
  16. Kim JH, Jang HJ, Lee NK, Paik HD. 2022. Antibacterial and antibiofilm effect of cell-free supernatant of Lactobacillus brevis KCCM 202399 isolated from Korean fermented food against Streptococcus mutans KCTC 5458. J. Microbiol. Biotechnol. 32: 56-63. 
  17. Abdelhamid AG, Esaam A, Hazaa MM. 2018. Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi Pharm. J. 26: 603-607. 
  18. Son SH, Jeon HL, Yang SJ, Sim MH, Kim YJ, Lee NK, et al. 2018. Probiotic lactic acid bacteria isolated from traditional Korean fermented foods based on β-glucosidase activity. Food Sci. Biotechnol. 27: 123-129. 
  19. Rossoni RD, Dos Santos Velloso M, De Barros PP, De Alvarenga JA, Dos Santos JD, Dos Santos Prado ACC, et al. 2020. Inhibitory effect of probiotic Lactobacillus supernatants from the oral cavity on Streptococcus mutans biofilms. Microb. Pathog. 123: 361-367. 
  20. Son SH, Jeon HL, Jeon EB, Lee NK, Park YS, Kang DK, et al. 2017. Potential probiotic Lactobacillus plantarum Ln4 from kimchi: Evaluation of β-galactosidase and antioxidant activities. LWT-Food Sci. Technol. 85: 181-186. 
  21. Jang HJ, Lee NK, Paik HD. 2019. Probiotic characterization of Lactobacillus brevis KU15153 showing antimicrobial and antioxidant effect isolated from kimchi. Food Sci. Biotechnol. 28: 1521-1528. 
  22. Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. 2019. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 29: 1177-1183. 
  23. Kim YJ, Yu HH, Song YJ, Park YJ, Lee NK, Paik HD. 2021. Anti-biofilm effect of the cell-free supernatant of probiotic Saccharomyces cerevisiae against Listeria monocytogenes. Food Control 121: 107667. 
  24. Yu HH, Song YJ, Yu HS, Lee NK, Paik HD. 2020. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci. 85: 157-164. 
  25. Taheur FB, Kouidhi B, Fdhila K, Elabed H, Slama RB, Mahdouani K, et al. 2016. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb. Pathog. 97: 213-220. 
  26. Yoo Y, Seo DH, Lee H, Cho ES, Song NE, Nam TG, et al. 2019. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J. Biotechnol. 298: 57-63. 
  27. Krzysciak W, Jurczak A, Koscielniak D, Bystrowska B, Skalniak A. 2014. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 33: 499-515. 
  28. Zhang Z, Lyu X, Xu Q, Li C, Lu M, Gong T, et al. 2020. Utilization of the extract of Cedrus deodara (Roxb. Ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. J. Ethnopharmacol. 257: 112856. 
  29. Misba L, Zaidi S, Khan AU. 2018. Efficacy of photodynamic therapy against Streptococcus mutans biofilms: Role of singlet oxygen. J. Photochem. Photobiol. B: Biol. 183: 16-21. 
  30. Oliveira LC, Silveira AMM. Monteiro AS, Santos VL, Nicoli JR, Azevedo VAC, Soares SC, et al. 2017. In silico prediction, in vitro antibacterial spectrum, and physicochemical properties of a putative bacteriocin produced by Lactobacillus rhamnosus strain L156.4. Front. Microbiol. 8: 876. 
  31. Ciandrini E, Campana R, Baffone W. 2017. Live and heat-killed Lactobacillus spp. interfere with Streptococcus mutans and Streptococcus oralis during biofilm development on titanium surface. Arch. Oral Biol. 78: 48-57. 
  32. Jang HJ, Kang MS, Yi SH, Hong JY, Hong SP. 2016. Comparative study on the characteristics of Weissella cibaria CMU and probiotic stains for oral care. Molecules 21: 1752. 
  33. Wang Y, Wang X, Jiang W, Wang K, Luo J, Li W, et al. 2018. Antimicrobial peptide GH12 suppresses cariogenic virulence factors of Streptococcus mutans. J. Oral Microbiol. 10: 1442089. 
  34. De Oliveira RVD, Bonafe FSS, Spolodorio DMP, Koga-lto CY, De Farias AL, Kirker KR, et al. 2020. Streptococcus mutans and actinomyces naeslundii interaction in dual-species biofilm. Microorganisms 8: 194. 
  35. Zhang Q, Qin S, Huang Y, Xu X, Zhao J, Zhang H, et al. 2019. Inhibitory and preventive effects of Lactobacillus plantarum FB-T9 on dental caries in rat. J. Oral Microbiol. 12: 1703883.