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A recent study by Lee et al. [1] used ‘duration of response 
(DOR)’ as an oncologic outcome parameter. Although 
uncommon in radiology research studies, DOR is often used 
as a secondary endpoint in many clinical studies along with 
the overall response rate (ORR)—the rate of treatment 
response, such as complete response, partial response, or 
both depending on the definition used in a study—as a 
primary endpoint to evaluate the efficacy of treatment [2,3]. 
Conventional endpoints, including ORR and progression-
free survival, have not shown consistent associations with 
overall survival (OS) benefits in immuno-oncology trials [4]. 
For example, the biological mechanisms of cytostatic agents 
can reduce the degree of tumor shrinkage. This can lead 
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to a higher proportion of patients exhibiting only stable 
disease and consequently lower ORR, despite an achievement 
of clinically significant improvements in OS. In contrast, 
the DOR in randomized phase 2 trials may be sensitive and 
useful for identifying signals of OS [4]. DOR has become a 
clinically important endpoint for evaluating treatments that 
offer both immediate and sustained responses, particularly 
in oncology studies [5,6]. In this article, we discuss the 
estimation and comparison of DORs between treatment 
groups.

How to Define and Estimate DOR?

DOR is defined as the duration from the onset of the first 
response to disease progression or death for any reason. 
Individuals who do not exhibit any disease progression or 
death during the follow-up period are censored at the last 
date of the response assessment.

DOR can differ depending on how intermediate events 
that may occur during the follow-up period after the first 
response are handled, and it also has various interpretations 
[7]. The intermediate events are those that can directly 
influence the occurrence of an event of interest (i.e., 
progression or death) and include the following: treatment 
discontinuation or modification and the start of new 
therapy. If we are interested in assessing the persistent 
effect of treatment even after treatment discontinuation 
and modification, then the intermediate events would not 
be considered either as the event of interest or as censoring 
[2]. In contrast, if we are interested in DOR when the 
patients are on a specific treatment, we could consider the 
treatment discontinuation as censoring. The handling for 
the start of a new therapy should be based on the reason 
why the new therapy was selected. If a physician decides a 
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new therapy when disease progression is suspected, then 
the new therapy should be treated as the event of interest. 
On the other hand, if there is interest in DOR for the 
patients who have not been administered the new therapy, 
then those patients who received new therapy are censored 
at the last response assessment before the start of the new 
therapy [2,3,8].

The DOR that takes into account the intermediate events 
mentioned above can be calculated as either a traditional/
conditional DOR or an unconditional DOR.

Traditional/Conditional DOR
Traditional/conditional DOR is a conditional estimate 

calculated only for patients who respond. It is calculated 
using time-to-event analysis. The common approach is 
to estimate median DOR, mean DOR, or DOR rate at a 
specific time using Kaplan–Meier method (Fig. 1). If the 
censoring rate is high, it may be necessary to determine a 
truncation time point for estimation. The mean DOR with 
the truncation time is called the restricted mean DOR [9].

Unconditional DOR Using PBIR
Unconditional DOR addresses the question of “what is 

the DOR for the treatment?”, when we do not know if a 
patient will be a responder. Huang et al. [10,11] introduced 
the concept of unconditional DOR, integrating the notions 
of ORR and DOR. To estimate this, they proposed the 
probability of being in response (PBIR), which is defined as 

the proportion of patients who have shown a response and 
remain in response at present. Every patient has one of the 
four states at a given time after a zero date (e.g., the start 
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Fig. 2. Unconditional mean DOR using PBIR curve. A: Kaplan–Meier curves for event (P, D, or R)-free survival and event (P or D)-
free survival in treatment A. The red PBIR curve in (C) is the difference between the two Kaplan–Meier curves. The area (gray) 
between the two Kaplan–Meier curves, which is the same as the area under corresponding PBIR curve indicates the mean DOR. The 
restricted mean DOR up to 5.75 y is 0.66 y. The truncation point is chosen as the shorter of the last censoring times among the two 
treatments. B: Kaplan–Meier curves for event (P, D, or R)-free survival and event (P or D)-free survival in treatment B. The blue PBIR 
curve in (C) is the difference between the two Kaplan–Meier curves. The restricted mean DOR up to 5.75 y (gray) is 1.23 y. C: Difference 
in mean DORs presented as difference in the areas under the PBIR curves. The gray area is the difference in mean DORs between two 
treatments, and it is not statistically significant (0.57 y, P = 0.053). DOR = duration of response, PBIR = probability of being in response, 
P = progression, D = death, R = response, y = years
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Fig. 1. Example Kaplan–Meier curves with traditional/conditional 
DOR measures. Two Kaplan–Meier curves for event (P or D)-
free survival within responders, one each for treatment A (red) 
and treatment B (blue). The median DOR, mean DOR, and DOR 
rate at 1 year of each treatment are presented in the top right 
portion of the figure. A separate analysis comparing restricted 
mean DOR up to 4 years between groups showed no statistically 
significant difference (P = 0.923). DOR = duration of response, 
P = progression, D = death, ORR = overall response rate, CI = 
confidence interval, y = years, NA = not available
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of treatment): currently responding [R], disease progression 
[P], death [D], or not yet in the state of P, D, or R. PBIR is 
defined as the difference between the probability of P, D, 
or R event and the probability of P or D event at a given 
time, which can be calculated by Kaplan–Meier estimates 
(Fig. 2). The area under PBIR curve during follow-up period 
corresponds to the unconditional mean DOR.

How to Compare DORs Between Treatment 
Groups?

In a comparative study, it is essential to appropriately 
compare estimated DORs. Most studies traditionally used the 
comparison of estimated DORs observed only in responders. 
Calculating DOR for only responders and excluding the non-
responders cannot determine whether one treatment is 
better than another. For example, consider an ineffective 
treatment that achieves a response only in patients who 
have a low disease burden at baseline and are less likely 
to experience disease progression [11]. For this ineffective 
treatment, the DOR in responders alone may appear 
deceptively large [11]. If two treatments have the same 
ORR, traditional/conditional DOR can be used to determine 
the more effective treatment; however, if one treatment 
has a lower ORR, a longer traditional/conditional DOR does 
not necessarily indicate better efficacy. In these situations, 
a comparison of traditional/conditional DOR between 
treatment groups may lead to a biased result. Therefore, to 
reduce the bias caused by differences in ORR, we propose 
comparing DORs using PBIR or within a subset where the 
probability of response between two groups is similar.

Comparison of Unconditional DORs Using PBIR
The comparison of DORs using PBIR involves an 

unconditional comparison of the entire population instead 
of limiting it to the responder population, thereby avoiding 
the selection bias (Fig. 2C).

One key consideration for comparing DORs using PBIR is 
the choice of truncation point i.e., comparison of restricted 
mean DORs. The principle of selecting a truncation point 
is to enable valid inferences about the probability of P, D, 
or R event and the probability of P or D event [9,12]. This 
is connected to the censoring rates at each time point. 
If a sufficient period of follow-up has been conducted to 
ensure that all patients experience P or D events, then the 
selection of the truncation point becomes irrelevant. If 
there are only sparse censoring cases before and after the 

selected truncation point, we need to be cautious in making 
inference for DOR up to the truncation point. In these 
scenarios, advancing a time point to where some patients 
are still at risk is more reliable [12]. R package ‘PBIR’ are 
available for analysis [13].

Comparison of Conditional DORs Within a Subset Where 
the Probability of Response is Similar Between the Two 
Groups

Korn et al. [14] proposed that reconstructing the subset 
of responders should be considered to reduce the bias in 
estimating treatment effects to compare the traditional/
conditional DOR between treatment groups. Specifically, 
the subset was constructed by removing patients in the 
experimental group who had the lowest likelihood of 
response when administered control treatment (e.g., those 
with the shortest survival) and conversely by adding non-
responders in the control group who had the highest 
likelihood of response when administered experimental 
treatment (e.g., those with the most tumor-burden 
reduction). Given that DOR of the added non-responders in 
the control group was not observed, it was assumed as the 
disease-free period from the zero date (e.g., the start of 
treatment). The size of the subset was set to be the same 
as the overall allocation ratio. This approach requires the 
validity of the measures used to estimate the likelihood of 
response in the hypothetical group that did not actually 
occur. Even if the measures are valid, the meaning of the 
subsets in this approach remains ambiguous. It is doubtful 
whether it can effectively prove scientific hypotheses.

Matsuyama & Morita [15] proposed applying Frangakis 
& Rubin’s method [16] for estimating the average causal 
effects within a subset of patients who are likely to 
respond in both treatment groups. This method is similar to 
propensity score analysis for causal inference [17,18], and 
the proposed approach consists of three steps.

1) Modelling: Fit separate logistic regression models with 
several covariates to predict the probability of response in 
each treatment group.

2) Prediction (the generation of propensity score): Predict 
the probability of response if each patient were administered 
the alternative treatment by applying the regression 
parameters of the other group estimated in step 1.

3) Weighting: Calculate the weighted mean DOR for each 
group by applying the probability of response generated in 
step 2 as individual weights.

In step 3, the potential outcomes are compared among 
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patients who are responders, specifically within the 
principal stratum. The efficiency of this approach depends 
on the adequacy of fitted models that can predict the 
probability of response in each treatment group. In other 
words, the key is how well we can collect the covariates 
that affect the response.

CONCLUSION

DOR is a robust metric that integrates both response 
status and response duration information [4]. For DOR 
estimation, it is important to determine how to handle 
intermediate events based on the purpose of the study 
and provide appropriate interpretations accordingly. When 
comparing DORs, we recommend methods that reduce bias 
originating from the difference in response rates between 
treatment groups, such as PBIR and Matsuyama’s approach 
within the principal stratum. By appropriately reporting 
DOR, we can gain insights into the efficacy of a particular 
treatment and support decision-making in patient care.
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