DOI QR코드

DOI QR Code

Korea-Registries to Overcome Dementia and Accelerate Dementia Research (K-ROAD): A Cohort for Dementia Research and Ethnic-Specific Insights

  • Hyemin Jang (Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Daeun Shin (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Yeshin Kim (Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine) ;
  • Ko Woon Kim (Department of Neurology, Jeonbuk National University Medical School and Hospital) ;
  • Juyoun Lee (Department of Neurology, Chungnam National University Hospital, School of Medicine, Chungnam National University) ;
  • Jun Pyo Kim (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Hee Jin Kim (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Soo Hyun Cho (Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School) ;
  • Si Eun Kim (Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital) ;
  • Duk. L. Na (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Sang Won Seo (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • K-ROAD Study Groups (K-ROAD Study Groups)
  • 투고 : 2024.09.23
  • 심사 : 2024.10.06
  • 발행 : 2024.10.31

초록

Background and Purpose: Dementia, particularly Alzheimer's disease, is a significant global health concern, with early diagnosis and treatment development being critical goals. While numerous cohorts have advanced dementia research, there is a lack of comprehensive data on ethnic differences, particularly for the Korean population. The Korea-Registries to Overcome Dementia and Accelerate Dementia Research (K-ROAD) aims to establish a large-scale, hospital-based dementia cohort to address this gap, with a focus on understanding disease progression, developing early diagnostics, and supporting treatment advancements specific to the Korean population. Methods: K-ROAD comprises multiple prospective cohorts. Participants underwent clinical evaluations, neuroimaging, and biomarker analysis, with data collected on a range of clinical and genomic markers. Results: As of December 2023, K-ROAD has recruited over 5,800 participants, including individuals across the Alzheimer's clinical syndrome, subcortical vascular cognitive impairment, and frontotemporal dementia spectra. Preliminary findings highlight significant ethnic differences in amyloid positivity, cognitive decline, and biomarker profiles, compared to Western cohorts. Conclusions: The K-ROAD cohort offers a unique and critical resource for dementia research, providing insights into ethnic-specific disease characteristics and biomarker profiles. These findings will contribute to the development of personalized diagnostic and therapeutic approaches to dementia, enhancing global understanding of the disease.

키워드

참고문헌

  1. Ahn HJ, Chin J, Park A, Lee BH, Suh MK, Seo SW, et al. Seoul Neuropsychological Screening Battery-dementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. J Korean Med Sci 2010;25:1071-1076.
  2. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:270-279.
  3. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269.
  4. Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med 2014;275:214-228.
  5. Park JH, Seo SW, Kim C, Kim SH, Kim GH, Kim ST, et al. Effects of cerebrovascular disease and amyloid beta burden on cognition in subjects with subcortical vascular cognitive impairment. Neurobiol Aging 2014;35:254-260.
  6. Kang SH, Kim ME, Jang H, Kwon H, Lee H, Kim HJ, et al. Amyloid positivity in the Alzheimer/subcortical-vascular spectrum. Neurology 2021;96:e2201-e2211.
  7. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80:496-503.
  8. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006-1014.
  9. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996;47:1-9.
  10. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011;134:2456-2477.
  11. Strong MJ, Abrahams S, Goldstein LH, Woolley S, Mclaughlin P, Snowden J, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017;18:153-174.
  12. Kang Y, Na D, Hahn S. Seoul Neuropsychological Screening Battery. Incheon: Human Brain Research & Consulting Co., 2003.
  13. Kang SH, Park YH, Lee D, Kim JP, Chin J, Ahn Y, et al. The cortical neuroanatomy related to specific neuropsychological deficits in Alzheimer's continuum. Dement Neurocogn Disord 2019;18:77-95.
  14. Kang Y, Jahng S, Na D. Seoul Neuropsychological Screening Battery (SNSB-II). 2nd ed. Incheon: Human Brain Research & Consulting Co., 2012.
  15. Ryu HJ, Yang DW. The Seoul Neuropsychological Screening Battery (SNSB) for comprehensive neuropsychological assessment. Dement Neurocogn Disord 2023;22:1-15.
  16. Wechsler D. Wechsler adult intelligence scale. Front Psychol 1955.
  17. Kaplan E, Goodglass H, Weintraub S. The Boston Naming Test. Philadelphia: Lea & Febiger, 1983.
  18. Meyers J, Meyers KR. Rey Complex Figure Test and Recognition Trial. Lutz: Psychological Assessment Resources, Inc., 1995.
  19. Benedict RH, Schretlen D, Groninger L, Brandt J. Hopkins Verbal Learning Test-revised: normative data and analysis of inter-form and test-retest reliability. Clin Neuropsychol 1998;12:43-55.
  20. Benton A, Hamsher K, Sivan A. Controlled Oral Word Association Test (COWAT). Multilingual Aphasia Examination. 3rd ed. Iowa City: AJA Associates, 1983.
  21. Golden CJ. Stroop Color and Word Test. A Manual for Clinical and Experimental Uses. Chicago: Stoelting Company, 1978.
  22. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-198.
  23. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 1993;43:2412-2414.
  24. Kang Y, Na DL, Hahn S. A validity study on the Korean Mini-Mental State Examination (K-MMSE) in dementia patients. J Korean Neurol Assoc 1997;15:300-308.
  25. O'Bryant SE, Waring SC, Cullum CM, Hall J, Lacritz L, Massman PJ, et al. Staging dementia using Clinical Dementia Rating Scale Sum of Boxes scores: a Texas Alzheimer's research consortium study. Arch Neurol 2008;65:1091-1095.
  26. Kim H, Na DL. Normative data on the Korean version of the Boston Naming Test. J Clin Exp Neuropsychol 1999;21:127-133.
  27. Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement 2015;11:1-15.e1.
  28. Kim SJ, Ham H, Park YH, Choe YS, Kim YJ, Jang H, et al. Development and clinical validation of CT-based regional modified Centiloid method for amyloid PET. Alzheimers Res Ther 2022;14:157.
  29. Chun MY, Jang H, Kim SJ, Park YH, Yun J, Lockhart SN, et al. Emerging role of vascular burden in AT(N) classification in individuals with Alzheimer's and concomitant cerebrovascular burdens. J Neurol Neurosurg Psychiatry 2023;95:44-51.
  30. Zijdenbos AP, Forghani R, Evans AC. Automatic "pipeline" analysis of 3-D MRI data for clinical trials: application to multiple sclerosis. IEEE Trans Med Imaging 2002;21:1280-1291.
  31. Collins DL, Neelin P, Peters TM, Evans AC. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994;18:192-205.
  32. Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998;17:87-97.
  33. Kim J, et al. Motor symptoms in early-versus late-onset Alzheimer's disease. J Alzheimers Dis 2023;91:345-354.
  34. Jack CR Jr, Knopman DS, Weigand SD, Wiste HJ, Vemuri P, Lowe V, et al. An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease. Ann Neurol 2012;71:765-775.
  35. Jack CR Jr, Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain 2015;138:3747-3759.
  36. Noh Y, Lee Y, Seo SW, Jeong JH, Choi SH, Back JH, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. J Stroke Cerebrovasc Dis 2014;23:636-642.
  37. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838.
  38. Zammit MD, Tudorascu DL, Laymon CM, Hartley SL, Zaman SH, Ances BM, et al. PET measurement of longitudinal amyloid load identifies the earliest stages of amyloid-beta accumulation during Alzheimer's disease progression in Down syndrome. Neuroimage 2021;228:117728.
  39. Kim SJ, Jang H, Yoo H, Na DL, Ham H, Kim HJ, et al. Clinical and pathological validation of CT-based regional harmonization methods of amyloid PET. Clin Nucl Med 2024;49:1-8.
  40. Frangou S, Abbasi F, Watson K, Haas SS, Antoniades M, Modabbernia A, et al. Hippocampal volume reduction is associated with direct measure of insulin resistance in adults. Neurosci Res 2022;174:19-24.
  41. Langella S, Mucha PJ, Giovanello KS, Dayan E; for the Alzheimer's Disease Neuroimaging Initiative. The association between hippocampal volume and memory in pathological aging is mediated by functional redundancy. Neurobiol Aging 2021;108:179-188.
  42. Alzheimer's Disease Neuroimaging Initiative. Access data and samples [Internet]. Alzheimer's Disease Neuroimaging Initiative; 2023 [cited 2023 Oct 27]. Available from: https://adni.loni.usc.edu/.
  43. Weiner MW, Aisen PS, Jack CR Jr, Jagust WJ, Trojanowski JQ, Shaw L, et al. The Alzheimer's disease neuroimaging initiative: progress report and future plans. Alzheimers Dement 2010;6:202-11.e7.
  44. Kim HR, Jung SH, Kim J, Jang H, Kang SH, Hwangbo S, et al. Identifying novel genetic variants for brain amyloid deposition: a genome-wide association study in the Korean population. Alzheimers Res Ther 2021;13:117.
  45. Kim SE, Woo S, Kim SW, Chin J, Kim HJ, Lee BI, et al. A nomogram for predicting amyloid PET positivity in amnestic mild cognitive impairment. J Alzheimers Dis 2018;66:681-691.
  46. Kim JP, Kim J, Jang H, Kim J, Kang SH, Kim JS, et al. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci Rep 2021;11:6954.
  47. Kang SH, Cheon BK, Kim JS, Jang H, Kim HJ, Park KW, et al. Machine learning for the prediction of amyloid positivity in amnestic mild cognitive impairment. J Alzheimers Dis 2021;80:143-157.
  48. Chun MY, Park CJ, Kim J, Jeong JH, Jang H, Kim K, et al. Prediction of conversion to dementia using interpretable machine learning in patients with amnestic mild cognitive impairment. Front Aging Neurosci 2022;14:898940.
  49. Kim KW, Woo SY, Kim S, Jang H, Kim Y, Cho SH, et al. Disease progression modeling of Alzheimer's disease according to education level. Sci Rep 2020;10:16808.
  50. Kim J, Woo SY, Kim S, Jang H, Kim J, Kim J, et al. Differential effects of risk factors on the cognitive trajectory of early- and late-onset Alzheimer's disease. Alzheimers Res Ther 2021;13:113.
  51. Jang H, Kim HJ, Choe YS, Kim SJ, Park S, Kim Y, et al. The impact of amyloid-β or tau on cognitive change in the presence of severe cerebrovascular disease. J Alzheimers Dis 2020;78:573-585.
  52. Jang H, Kim HJ, Park S, Park YH, Choe Y, Cho H, et al. Application of an amyloid and tau classification system in subcortical vascular cognitive impairment patients. Eur J Nucl Med Mol Imaging 2020;47:292-303.
  53. Morris E, Chalkidou A, Hammers A, Peacock J, Summers J, Keevil S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2016;43:374-385.