DOI QR코드

DOI QR Code

Guided bone regeneration of calcium phosphate-coated and strontium ranelate-doped titanium mesh in a rat calvarial defect model

  • Seon Mi Byeon (Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University) ;
  • Tae Sung Bae (Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University) ;
  • Min Ho Lee (Department of Dental Biomaterials, Institute of Biodegradable Materials, School of Dentistry, Jeonbuk National University) ;
  • Seung Geun Ahn (Department of Prosthodontics, School of Dentistry, Jeonbuk National University)
  • Received : 2023.06.19
  • Accepted : 2023.11.29
  • Published : 2024.10.30

Abstract

Purpose: When applied alone, titanium (Ti) mesh may not effectively block the penetration of soft tissues, resulting in insufficient new bone formation. This study aimed to confer bioactivity and improve bone regeneration by doping calcium phosphate (CaP) precipitation and strontium (Sr) ranelate onto a TiO2 nanotube (TNT) layer on the surface of a Ti mesh. Methods: The TNT layer was obtained by anodizing on the Ti mesh, and CaP was formed by cyclic pre-calcification. The final specimens were produced by doping with Sr ranelate. The surface properties of the modified Ti mesh were investigated using high-resolution field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. To evaluate the effects of surface treatment on cell viability, osteoblasts were cultured for 1-3 days, and their absorbance was subsequently measured. In an in vivo experiment, critical-size defects were created in rat calvaria (𝚽=8 mm). After 5 weeks, the rats were sacrificed (n=4 per group) and bone blocks were taken for micro-computed tomography and histological analysis. Results: After immersing the Sr ranelate-doped Ti mesh in simulated body fluid, the protrusions observed in the initial stage of hydroxyapatite were precipitated as a dense structure. On day 3 of osteoblast culture, cell viability was significantly higher on the precalcified Sr ranelate-doped Ti mesh surface than on the untreated Ti mesh surface (P<0.05). In the in vivo experiment, a bony bridge formed between the surrounding basal bone and the new bone under the Sr ranelate-doped Ti mesh implanted in a rat calvarial defect, closing the defect. New bone mineral density (0.91±0.003 g/mm3) and bone volume (29.35±2.082 mm3) significantly increased compared to the other groups (P<0.05). Conclusions: Cyclic pre-calcification of a Ti mesh with a uniform TNT layer increased bioactivity, and subsequent doping with Sr ranelate effectively improved bone regeneration in bone defects.

Keywords

References

  1. Urban IA, Monje A. Guided bone regeneration in alveolar bone reconstruction. Oral Maxillofac Surg Clin North Am 2019;31:331-8.
  2. Rasia-dal Polo M, Poli PP, Rancitelli D, Beretta M, Maiorana C. Alveolar ridge reconstruction with titanium meshes: a systematic review of the literature. Med Oral Patol Oral Cir Bucal 2014;19:e639-46.
  3. Azhar IS, Ayulita D, Laksono H, Margaretha TA. The efficiency of PRF, PTFE, and titanium mesh with collagen membranes for vertical alveolar bone addition in dental implant therapy: a narrative review. J Int Oral Health 2022;14:543-50.
  4. Alauddin MS, Abdul Hayei NA, Sabarudin MA, Mat Baharin NH. Barrier membrane in regenerative therapy: a narrative review. Membranes (Basel) 2022;12:444.
  5. Rakhmatia YD, Ayukawa Y, Furuhashi A, Koyano K. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J Prosthodont Res 2013;57:3-14.
  6. Higuchi M, Moroi A, Yoshizawa K, Kosaka A, Ikawa H, Iguchi R, et al. Comparison between various densities of pore titanium meshes and e-polytetrafluoroethylene (ePTFE) membrane regarding bone regeneration induced by low intensity pulsed ultrasound (LIPUS) in rabbit nasal bone. J Craniomaxillofac Surg 2016;44:1152-61.
  7. Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R. CAD-CAM prosthetically guided bone regeneration using preformed titanium mesh for the reconstruction of atrophic maxillary arches. Comput Methods Biomech Biomed Engin 2013;16:26-32.
  8. Su JY, Chang YC. Complex alveolar bony defect reconstruction with three dimensional printing model to assist custom-made titanium mesh for guided bone regeneration. J Dent Sci 2021;16:778-9.
  9. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci Mater Med 2002;13:397-401.
  10. Minagar S, Berndt CC, Wang J, Ivanova E, Wen C. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 2012;8:2875-88.
  11. Rasouli R, Barhoum A, Uludag H. A review of nanostructured surfaces and materials for dental implants: surface coating, patterning and functionalization for improved performance. Biomater Sci 2018;6:1312-38.
  12. Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, Gultepe E, Nagesha D, et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol 2013;9:1092-7.
  13. Kunze J, Muller L, Macak JM, Greil P, Schmuki P, Muller FA. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim Acta 2008;53:6995-7003.
  14. Mor G, Varghese OK, Paulose M, Mukherjee N, Grimes CA. Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 2003;18:2588-93.
  15. Wang Q, Huang JY, Li HQ, Zhao AZJ, Wang Y, Zhang KQ, et al. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications. Int J Nanomedicine 2016;12:151-65.
  16. Kodama A, Bauer S, Komatsu A, Asoh H, Ono S, Schmuki P. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 2009;5:2322-30.
  17. Park HH, Park IS, Kim KS, Jeon WY, Park BK, Kim HS, et al. Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation. Electrochim Acta 2010;55:6109-14.
  18. Nguyen TDT, Jang YS, Kim YK, Kim SY, Lee MH, Bae TS. Osteogenesis-related gene expression and guided bone regeneration of a strontium-doped calcium-phosphate-coated titanium mesh. ACS Biomater Sci Eng 2019;5:6715-24.
  19. Wu S, Jang YS, Lee MH. Enhancement of bone regeneration on calcium-phosphate-coated magnesium mesh: using the rat calvarial model. Front Bioeng Biotechnol 2021;9:652334.
  20. Marie PJ. Strontium as therapy for osteoporosis. Curr Opin Pharmacol 2005;5:633-6.
  21. Buehler J, Chappuis P, Saffar JL, Tsouderos Y, Vignery A. Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis). Bone 2001;29:176-9.
  22. Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol 2017;4:46-56.
  23. Deeks ED, Dhillon S. Strontium ranelate: a review of its use in the treatment of postmenopausal osteoporosis. Drugs 2010;70:733-59.
  24. Zhu G, Wang G, Li JJ. Advances in implant surface modifications to improve osseointegration. Mater Adv 2021;2:6901-27.
  25. Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent advance of strontium functionalized in biomaterials for bone regeneration. Bioengineering (Basel) 2023;10:414.
  26. Choi SM, Park JW. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function. J Biomed Mater Res A 2018;106:3009-20.
  27. Xu Y, Zhang L, Xu J, Li J, Wang H, He F. Strontium-incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: a preclinical vivo experimental study. Clin Oral Implants Res 2021;32:1366-83.
  28. Chiapasco M, Casentini P, Tommasato G, Dellavia C, Del Fabbro M. Customized CAD/CAM titanium meshes for the guided bone regeneration of severe alveolar ridge defects: preliminary results of a retrospective clinical study in humans. Clin Oral Implants Res 2021;32:498-510.
  29. Maiorana C, Manfredini M, Beretta M, Signorino F, Bovio A, Poli PP. Clinical and radiographic evaluation of simultaneous alveolar ridge augmentation by means of preformed titanium meshes at dehiscence-type peri-implant defects: a prospective pilot study. Materials (Basel) 2020;13:2389.
  30. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017;125:315-37.
  31. Xie Y, Li S, Zhang T, Wang C, Cai X. Titanium mesh for bone augmentation in oral implantology: current application and progress. Int J Oral Sci 2020;12:37.
  32. Mandracci P, Mussano F, Rivolo P, Carossa S. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 2016;6:7.
  33. Shahali H, Jaggessar A, Yarlagadda PK. Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Eng 2017;174:1067-76.
  34. Nguyen TD, Moon SH, Oh TJ, Seok JJ, Lee MH, Bae TS. Comparison of guided bone regeneration between surface-modified and pristine titanium membranes in a rat calvarial model. Int J Oral Maxillofac Implants 2016;31:581-90.
  35. Gu YX, Du J, Zhao JM, Si MS, Mo JJ, Lai HC. Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method. J Biomed Mater Res B Appl Biomater 2012;100:2122-30.
  36. Li P, Ohtsuki C, Kokubo T, Nakanishi K, Soga N, de Groot K. The role of hydrated silica, titania, and alumina in inducing apatite on implants. J Biomed Mater Res 1994;28:7-15.
  37. Lindahl C, Engqvist H, Xia W. Effect of strontium ions on the early formation of biomimetic apatite on single crystalline rutile. Appl Surf Sci 2013;266:199-204.
  38. Nguyen TDT, Jang YS, Lee MH, Bae TS. Effect of strontium doping on the biocompatibility of calcium phosphate-coated titanium substrates. J Appl Biomater Funct Mater 2019;17:2280800019826517.
  39. Avci M, Yilmaz B, Tezcaner A, Evis Z. Strontium doped hydroxyapatite biomimetic coatings on Ti6Al4V plates. Ceram Int 2017;43:9431-6.
  40. Reginster JY, Neuprez A. Strontium ranelate: a look back at its use for osteoporosis. Expert Opin Pharmacother 2010;11:2915-27.
  41. Bonnelye E, Chabadel A, Saltel F, Jurdic P. Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. Bone 2008;42:129-38.
  42. Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Strontium and strontium ranelate: historical review of some of their functions. Mater Sci Eng C 2017;78:1222-30.
  43. Yan J, Sun JF, Chu PK, Han Y, Zhang YM. Bone integration capability of a series of strontium-containing hydroxyapatite coatings formed by micro-arc oxidation. J Biomed Mater Res A 2013;101:2465-80.