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Introduction

     Unlike Western medicine, the practitioners in 

traditional Korean medicine (TKM) prescribe herbal 

medicines with more than one herb that contains numerous 

ingredients1). In addition, an efficacy of an herbal formula 

has been explained by the inherent, combined efficacies of 

each herb—not by ingredient—and by the interactions 

between herbs from the perspective of the TKM theory2). 

However, due to the changing trends in traditional 

medicines in South Korea, this traditional approach has lost 

its credibility from both groups of patient and 

practitioner3,4). This trend is considered to be a public 

request for scientific validation of the possibility of 

ineffectiveness, low efficacy, or potential risk, even thought 

traditional prescription formulation principles of herbal 

medicine are well established5). 

     Verifying efficacy of herbal medicine via clinical trials 

needs relatively longer period of time and has low 

applicability to the vast number of herbal formulas 

described in old literatures of TKM6). In addition, many 

clinicians change composition of an herbal formula by 

adding or removing one or more herbs from an original 

composition, because each herb has own link to specific 

symptom or syndrome7). Most TKM practitioners change 

herbs in an herbal formula according to changes of 

patient’s symptoms, however this aspect could not have 

been considered in the clinical trial setting. 

     Network pharmacology is developed based on systems 

biology to design polypharmacy study and to discover 
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candidate ingredients or targets by predicting the 

association between ingredients, target proteins, and disease 

data8). The “multi-ingredient to multi-target” prediction—

main concept of network pharmacology—has been 

considered a new method that can help validate herbal 

medicine or TKM theories because of similarity to the 

efficacy theory of herbal formulas9). Many researchers have 

been actively using the network pharmacology in recent 

herbal medicine studies. Analysis of TKM using network 

pharmacology has the advantage of increasing the success 

rate of research through prediction before conducting new 

research with an herb or an herbal formula10,11).

     A number of network pharmacology databases based 

on herbal medicine data have been developed; i.e., 

Traditional Chinese Medicine Systems Pharmacology 

database and analysis platform (TCMSP, 

https://old.tcmsp-e.com/tcmsp.php)12); Bioinformatics 

Analysis Tool for the Molecular mechanism of Traditional 

Chinese Medicine 1.0 (BATMAN-TCM 1.0, 

http://bionet.ncpsb.org.cn/batman-tcm/index.php/Home/Ind

ex/index)13); and Traditional Chinese Medicine Integrative 

Database (TCMID, http://47.100.169.139/tcmid/)14). The 

analysis process of herbal medicine-based network 

pharmacology is as follows. First, deriving ingredients 

consisting of an herb from TCM bioinformatics database. 

Second, deriving targets predicted from the ingredient list 

by TCM bioinformatics database. Thrid, predicting a 

mechanism of efficacies or related diseases from the target 

list by interpreting prediction results15-17). TCMSP and 

BATMAN-TCM databases are widely used to conduct a 

network analysis of each herb and herbal formula18-20). 

However, many comparative studies seemed to be limited to 

the comparison of the number of herbs, ingredients, 

targets, and diseases, or the main goal of the study was 

not the comparison of prediction difference related to the 

characteristics of databases with an example herb. 

     Licorice root is the most frequently used herb (27%) 

out of approximately 100,000 herbal formulas in traditional 

Chinese medicine21), which came from a variety of 

Glycyrrhiza species; i.e., Glycyrrhiza uralensis Fisch.; 

Glycyrrhiza glabra L.; Glycyrrhiza inflata Batalin; Glycyrrhiza

aspera Pall.; Glycyrrhiza yunnanensis P.C.Li; Glycyrrhiza

squamulose Franch., etc.. Licorice root, a qi-tonifying herb, 

is known to tonifies spleen, moistens dryness of lung, 

removes toxins, and coordinates with many other herbs in 

an herbal formula according to TKM theory22). Traditional 

indications for licorice root are varied; i.e., cough; sore 

throat; thirst; fatigue; erectile dysfunction; shortness of 

breath; pyogenic infections and resulting ulcers and 

abscesses; fever induced by deficient state; fright palpitation; 

irritancy; epilepsy; abdominal distension; forgetfulness; 

painful urination with blood of women; and lower back pain 

of women23). Among twenty-five representative candidate 

herbs, licorice was selected because of the highest numbers 

of ingredient derived—92 and 75—both from TCMSP and 

BATMAN-TCM. Another representative herb, ginseng was 

excluded owing to a big gap of the number of ingredients 

between databases with 22 and 112.

     Many network pharmacology research papers do not 

seem to clearly present the protocols they used for their 

analysis or the reasons for choosing the databases or tools 

they used. This aspect has the potential to bias the 

interpretation of prediction results according to the 

databases or tools chosen. Thus, we aimed to explore how 

different the prediction results are shown between two 

popular TCM bioinformatics databases—TCMSP and 

BATMAN-TCM 1.0—designed by different prediction 

algorithms12,13). At the same time, we aimed to propose a 

more effective analysis approach by showing the difference 

in the prediction results between the two TCM 

bioinformatics databases. 

     In this study, we conducted brief comparison of the 

algorithmic difference between the two TCM bioinformatics 

databases with published literatures, and compared the 

actual prediction results from one example herb, licorice. 

Fig. 1. shows the overall process of this study.

Fig. 1. Overall process of study. The database for annotation, 

visualization, and integrated discovery (DAVID) was not used for disease 

prediction range comparison, and the disease lists collected from TCMSP 

and BATMAN-TCM are used for comparison against disease list collected 

from in vivo study literatures. Dotted arrows are for visibility purpose and 

have the same meaning as solid arrows; Abbreviations: PK, 

pharmacokinetics, TCM, traditional Chinese medicine
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Materials and Methods

1. Comparison of prediction results using licorice

     We derived a list of representative medicinal herbs from 

a textbook for medicinal herbs used in the current College 

of Korean Medicine curricula. We input ingredients on the 

list to TCMSP and BATMAN-TCM 1.0 database. BATMAN-TCM

2.0 (http://bionet.ncpsb.org.cn/batman-tcm/#/home) were 

not included in this study which was updated in October 

2023. TCMID was excluded because of inaccessibility. 

Subsequently, we screened one herb with a sufficient 

number of ingredients from both databases to conduct a 

reliable analysis. 

     We compared prediction results from three different 

combinations of bioinformatics databases and analytics 

tools; enrichment analysis with DAVID using a target list 

predicted by TCMSP (DAV-SP: 1st scenario); enrichment 

analysis with DAVID using a target list predicted by 

BATMAN-TCM (DAV-BAT: 2nd scenario); and enrichment 

analysis with BATMAN-TCM using a target list predicted by 

BATMAN-TCM (BAT-BAT: 3rd scenario). 

     In TCMSP, an ingredient list was derived based on 

criteria of oral bioavailability (OB) ≥ 30% and drug-likeness 

(DL) ≥ 0.18, which are parameters reflecting the 

absorption, distribution, metabolism, and excretion (ADME) 

of an ingredient. In BATMAN-TCM, an ingredient list was 

derived based on a cut-off score of ≥ 20. We collected 

predicted target lists related to each ingredient by both 

TCM databases and converted full names of targets only 

from TCMSP to official gene symbols via UniProt database 

(https://www.uniprot.org/). BATMAN-TCM provides targets 

with official gene symbols. The ingredient-target networks 

were visualized and analyzed via Cytoscape software (ver. 

3.9.1). The ingredients and targets were arranged by highest 

degree in the network. 

2. Comparison of predictions from the different scenarios

     The enrichment analysis of gene ontology term 

(GO-term) and Kyoto Encyclopedia of genes and genomes 

(KEGG) pathway term were compared to predict the 

biological action of an herb in the human body. Since 

BATMAN-TCM provides the enrichment analysis of GO-term, 

KEGG pathway and disease prediction results within the 

database (which TCMSP doesn’t provide), using 

BATMAN-TCM alone from predicting targets to analyzing 

results was also considered the third scenario. 

     We inputted the whole target lists from each database 

without top-10 priority adjustment into the DAVID, 

conducted enrichment analysis, and collected the top-10 

GO-terms and KEGG pathway terms in a lowest order at the 

level of adjusted p-value less than 0.05. The top-10 enriched 

GO-terms and KEGG pathway terms related to biological 

process were compared between the three scenarios. The 

‘GO-term_5’ result from DAVID was used for analysis 

because it had the highest specificity than other options. 

The top-10 enriched GO-terms and KEGG pathway terms 

were interpreted with reference to several databases, such 

as Gene Ontology Resource (https://geneontology.org/) and 

KEGG database (https://www.genome.jp/kegg/pathway.html). 

3. Comparison of prediction range for diseases with in vivo

study literatures

     Prediction range for disease by the three scenarios were 

compared against disease list collected from in vivo study 

literatures. In PubMed (https://pubmed.ncbi.nlm.nih.gov),

using the search term “licorice”, in vivo study literatures 

including clinical trial, case report, and animal study 

written in English over the past ten years were collected. 

Studies including herbs other than licorice were excluded. 

All diseases names were classified and unified by checking 

against international classification of diseases 11th (ICD-11) 

version code. The disease names not recognized as official 

disease names were excluded. Clinical trials including herbs 

other than licorice and animal studies without specific 

disease name were also excluded. We derived and listed 

diseases predicted from the whole target lists of TCMSP and 

BATMAN-TCM without Top-10 priority adjustment, 

respectively. Similar disease names were unified. 

Results

1. Algorithmic differences between two databases

     Although both TCM bioinformatics databases have 

common features in constructing datasets and utilizing 

existing Food and Drug Administration (FDA)-approved drug 

information, the main difference was present in the method 

of analysis. TCMSP predicts the ingredient-target 

interactions based on molecular and ligand structural 

pattern analysis, whereas BATMAN-TCM predicts the binding 

potential based on a similarity comparison with putative 

ingredients. In addition, TCMSP uses the self-developed 

artificial intelligence (AI) called SysDT, and BATMAN-TCM 

uses a similarity calculation formula12,13,24). SysDT predicts a 

target protein or ligand for a given ligand or target protein 

without initially setting a special similar dataset. The target 

proteins were selected based on their structural and 
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physicochemical values, and predictions were made based 

on the extraction of conserved patterns from interaction 

vectors containing both the target protein and the encoding 

vector of the corresponding ligand24). Similarity scores 

between the candidate ingredient and the similar ingredient 

and between the candidate target protein and the similar 

protein selected from the standard dataset were calculated. 

The ingredient – ingredient similarity scores consisted of six 

different scores: two chemical structure similarity scores, a 

side-effect similarity score from the side effect resource 

database (SIDER), the Anatomic Therapeutic Chemical (ATC) 

classification system, drug-induced gene expression, and 

text mining scores. Each similarity score was correlated 

using the minimum redundancy maximum relevance 

method, and eight features with a high correlation were 

used in the predictive model. Finally, the prediction score is 

calculated using the maximum likelihood ratios for the eight 

features13). Therefore, it is speculated that these differences 

may affect the reliability and accuracy of the prediction 

results.

2. Comparison of ingredient and target lists of licorice

     Fig. 2. shows the numbers and proportions of 

ingredients and targets derived from TCMSP and 

BATMAN-TCM. In TCMSP, from the total 281 ingredients, 92 

ingredients were derived based on the OB and DL. Four 

ingredients without a predicted target were excluded; 

licorice glycoside E; glycyroside; glyuranolide; and 18α

-hydroxyglycyrrhetic acid. Eighty eight ingredients were 

identified and 219 targets were identified from 1,657 

ingredient-target pairs. In BATMAN-TCM, from the total 172 

ingredients, 125 ingredients were derived after fifty 

ingredients without a predicted target were excluded. 

Seventy five ingredients were identified and 691 targets 

were identified from 1,593 ingredient-target pairs. Table 1 

shows the ingredients and targets with the top-10 highest 

degree in ingredient-target network. The number of 

common ingredients between TCMSP and BATMAN-TCM 

changed from 49 (16%) to 7 (4.5%) after exclusion explained 

above. The seven common ingredients were glycyrol, 

glycyrin, isoglycyrol, licocoumarone, liquiritin, isotrifoliol, 

and 3’-methoxyglabridin. Among the top-10 ingredients, no 

common ingredients between TCMSP and BATMAN-TCM 

were found. The top-10 ingredients of TCMSP include 

quercetin and kaempferol whereas the top-10 ingredients of 

BATMAN-TCM include glycyrrhetic acid and glycyrrhetinic 

acid, which are a same ingredient. The number of common 

targets from the total target list between TCMSP and 

BATMAN-TCM was 79 (9.5%). Among the top-10 targets, 

common targets were AR (androgen receptor) and ESR1 

(estrogen receptor 1). 

     Fig. 2. shows the difference between the visualized 

networks of ingredient-target between TCMSP and 

BATMAN-TCM. The network of TCMSP tends to have a lot 

more ingredients connected to one target, whereas the 

network of BATMAN-TCM tends to have a lot more targets 

connected to one ingredient. (Fig. 2)

Fig. 2. The percentages of common ingredients or targets between 

TCMSP and BATMAN-TCM with different trends of ingredient-target 

networks. (A) Ingredients of the final list. (B) Targets from total lists. (C) 

Targets with top-10 highest degree in the ingredient-target network. (D) 

Difference of ingredient-target networks between TCMSP and 

BATMAN-TCM. 

3. Comparison of predicted enrichment analysis of licorice

    The top-10 enriched GO-terms showed different trends 

among three different scenarios of tools; DAV-SP scenario 

showed a trend of response and process of cell to stimulus 

including apoptosis (cellular response to organic cyclic 

compound; cellular response to lipid; cellular response to 

organonitrogen compound; response to steroid hormone; 

response to hypoxia; apoptotic process; regulation of 

apoptotic process; and regulation of programmed cell 

death); DAV-BAT scenario showed a trend of cell signaling 

and homeostasis (regulation of ion transport; cation 

transport; positive regulation of transport; ion 

transmembrane transport; regulation of transmembrane 

transport; regulation of ion transmembrane transport; ion 

homeostasis; cellular chemical homeostasis; and 

trans-synaptic signaling); and BAT-BAT scenario showed an 

ambiguous trend. No common GO-terms among the three 



H. J. Jun et al 233

combinations were shown from the top-10 results. Table 2 

shows the top-10 enrichment analysis for biological process 

of GO-terms. 

    The top-10 enriched KEGG pathway terms showed 

different trends between three different scenarios; DAV-SP 

scenario showed a trend of cancer (pathways in cancer; 

prostate cancer; receptor activation-chemical 

carcinogenesis; pancreatic cancer; bladder cancer; and 

herpesvirus infection associated Kaposi sarcoma) and heart 

(Fluid shear stress and atherosclerosis; lipid and 

atherosclerosis; and AGE-RAGE signaling pathway in 

diabetic complications); DAV-BAT scenario showed a trend 

of neurotransmission and heart (neuroactive ligand-receptor 

interaction; calcium signaling pathway; cAMP signaling 

pathway; Cholinergic synapse; adrenergic signaling in 

cardiomyocytes; fluid shear stress and atherosclerosis; and 

oxytocin pathway). BAT-BAT scenario also showed a trend 

of neurotransmission and heart (neuroactive ligand-receptor 

interaction; calcium signaling pathway; cardiac muscle 

contraction; pathway of cyclic GMP to PKG signaling in cell; 

cholinergic synapse; and adrenergic signaling in 

cardiomyocytes). No common KEGG pathway terms between 

the three scenarios were shown from the top-10 results. 

The common KEGG pathway terms between DAV-SP and 

DAV-BAT scenarios were pathway in cancer, fluid sheer 

stress and atherosclerosis. The common KEGG pathway 

terms between DAV-BAT and BAT-BAT scenarios were 

neuroactive ligand-receptor interaction, calcium signaling 

pathway, glutathione metabolism, cholinergic synapse, and 

adrenergic signaling in cardiomyocytes. No common KEGG 

pathway terms were shown between DAV-SP and BAT-BAT 

scenarios. Table 3 shows the top-10 enriched KEGG pathway 

terms. 

Table 1. The top-10 ingredient and target list predicted by TCM bioinformatics databases

No. 
Target Ingredient

TCMSP BATMAN-TCM TCMSP BATMAN-TCM

1 PTGS2 NR3C1 quercetin 9,11,15-octadecatrienoic acid

2 ESR1* DRD2 kaempferol tetrahydropalmatine

3 CALM1 CNR1 7-Methoxy-2-methyl-3-phenyl-4H-chromen-4-one alpha-trihydroxy coprostanic acid

4
AR*

CNR2, ESR1* formononetin glycyrrhetic acid; galanthaminone

5 NOS2; PPARG AR* naringenin; isorhamnetin tetrahydroharmine

6 PIM2 PGR, ATP1A1 Medicarpin dimethyl Sebacate

7 GSK3B; CDK2 CHRNB2
Licochalcone A; 

2-[(3R)-8,8-dimethyl-3,4-dihydro-2H-pyrano[6,5-f]c
hromen-3-yl]-5-methoxyphenol

isotrilobine, methylglyoxal

8 ESR2; PRSS1 NR3C2, PRKCA shinpterocarpin glycyrrhetol

9 CCNA2
OPRK1, SEC14L3, PPP2CA, NR1I2, ALOX5, PPP2CB, 
SEC14L2, DGKA, PRKCB, SEC14L4, SUMO1, CAV3, 

RNF207, ZP3, SOAT1, MTTP, SOAT2
vestitol

glycyrrhetinic Acid; 
18alpha-glycyrrhetinic acid

10 F10
AKT1, CCR7, ABHD6, MGLL, FCER1G, GPR55, 

FCER1A, C3, DAGLA, PLIN5
licoagrocarpin gamma-sitosterol

* Common targets between TCMSP and BATMAN-TCM; Abbreviations: TCM, traditional Chinese medicine 

4. Comparison of recapitulation range of disease against to 

in vivo study literatures

    In the process of categorizing and unifying disease 

names to ICD-11 codes, 25 (TCMSP) and 35 (BATMAN-TCM) 

diseases were excluded. Among 113 in vivo studies, 6 

clinical trials including herbs other than licorice and 9 

animal studies without specific disease name were excluded. 

Fifteen and 21 similar disease names in each list from 

TCMSP and BATMAN-TCM were unified.

    TCMSP recapitulated 243 diseases whereas 

BATMAN-TCM recapitulated 391 diseases. Sixty two diseases 

were derived from the 98 in vivo study literatures consisted 

of 23 clinical trials, 11 case reports, and 64 animal studies. 

The number of common diseases between TCMSP and 

BATMAN-TCM was 184. The number of unique diseases was 

59 for TCMSP (24%) and 207 for BATMAN-TCM (53%). 

Among total diseases recapitulated, the disease 

classifications with the highest frequency were as follows; 

Neoplasms; circulatory system; symptoms, signs or clinical 

findings, not elsewhere classified; nervous system; 

endocrine, nutritional or metabolic; and mental, behavioral 

or neurodevelopmental disorders. The diseases derived from 

literatures with highest frequency were as follows; colorectal 

cancer; hepatic cancer; caries; diabetes; liver injury; 

hypertension; severe hypokalemia; obesity, etc.  

    Among the 62 diseases derived from in vivo study 

literature, 26 diseases were recapitulated by TCMSP and 32 

diseases were recapitulated by BATMAN-TCM. Among the 

recapitulated diseases, 2 diseases (endometrial carcinoma 

and lung cancer) were recapitulated by TCMSP alone, and 8 
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diseases (allergic rhinitis, unspecified; colitis; gastric cancer; 

hypotension; neutrophil-mediated liver injury; osteosarcoma; 

pulmonary hypertension; and type I hypersensitivity) were 

recapitulated by BATMAN-TCM alone. Twenty-eight diseases 

were not recapitulated by TCMSP and BATMAN-TCM. Fifty 

five percent of diseases were recapitulated by two databases 

among the diseases derived from in vivo study literatures. 

Table 2. Top-10 enrichment analysis results of GO-terms among the three scenarios

No.

DAV-SP DAV-BAT BAT-BAT

GO-Term BP
Adjusted P 

value
GO-Term BP

Adjusted P 
value

GO-Term BP
Adjusted P 

value

1
Cellular response to organic cyclic 

compound
8.30E-38 Regulation of ion transport 1.00E-82 Cell-cell signaling 9.16E-85

2
Positive regulation of cellular 

metabolic process; Cellular response 
to lipid

3.60E-37 Cation transport 1.80E-70 Homeostatic process 9.82E-64

3
Positive regulation of macromolecule 

metabolic process
5.60E-34 Ion homeostasis 1.50E-66 Transport 2.98E-58

4
Intracellular signal transduction; 

Apoptotic process
1.80E-32 Secretion 6.70E-63 Response to stress 1.31E-47

5
Cellular response to organonitrogen 

compound
2.80E-32 Positive regulation of transport 6.80E-61 Circulatory system process 1.88E-47

6
Regulation of intracellular signal 

transduction
7.90E-31

Regulation of secretion; 
Trans-synaptic signaling; Ion 

transmembrane transport
1.50E-60 Transmembrane transport 4.02E-47

7 Response to hypoxia 8.90E-31 cellular chemical homeostasis 1.60E-56 Neurological system process 1.56E-42

8
Positive regulation of signal 

transduction
1.10E-30

Regulation of transmembrane 
transport

1.70E-56 Lipid metabolic process 1.19E-39

9 Regulation of apoptotic process 2.30E-30
Regulation of ion transmembrane 

transport; Regulation of blood 
circulation

1.80E-55 Cell proliferation 4.29E-36

10
Regulation of programmed cell 

death; Response to steroid hormone
6.40E-30 regulation of secretion by cell 5.10E-53 Anatomical structure development 5.40E-36

DAV-SP, enrichment analysis using DAVID from targets predicted by TCMSP; DAV-BAT, enrichment analysis using DAVID from targets predicted by BATMAN-TCM; 
BAT-BAT, enrichment analysis using BATMAN-TCM from targets predicted by same BATMAN-TCM;  Abbreviations: GO-term, Gene Ontology term; BP, biological process 

Table 3. Top-10 enrichment analysis results of KEGG pathway terms among the three scenarios

No.

DAV-SP DAV-BAT BAT-BAT

KEGG Pathway Terms
Adjusted P 

value
KEGG Pathway Terms

Adjusted P 
value

KEGG Pathway Terms
Adjusted P 

value

1 Pathways in cancer* 6.10E-36
Neuroactive ligand-receptor 

interaction#
4.90E-45

Neuroactive ligand-receptor 
interaction#

1.66E-37

2 Lipid and atherosclerosis 5.20E-30 Calcium signaling pathway# 2.10E-26 Calcium signaling pathway# 1.12E-22

3
AGE-RAGE signaling pathway in 

diabetic
2.20E-28 cAMP signaling pathway 3.60E-24 Glutathione metabolism# 3.31E-21

4
Fluid shear stress and 

atherosclerosis*
3.80E-23

Fluid shear stress and 
atherosclerosis*

1.40E-21 Cardiac muscle contraction 1.73E-12

5 Hepatitis B 3.90E-23 Glutathione metabolism# 7.10E-21
Metabolism of xenobiotics by 

Cytochrome P450
2.77E-12

6 Prostate cancer 1.80E-22
Chemical carcinogenesis - 

receptor activation*
3.60E-17 Drug metabolism - Cytochrome P450 4.55E-10

7
Chemical carcinogenesis - 

receptor activation*
4.30E-22 Cholinergic synapse# 2.20E-14 cGMP - PKG signaling pathway 3.79E-08

8 Pancreatic cancer 6.90E-22 Pathways in cancer* 3.70E-14 Steroid hormone biosynthesis 1.01E-07

9
Kaposi sarcoma-associated 

Herpesvirus infection
1.40E-21

Renin secretion; Oxytocin 
signaling pathway

1.10E-12 Cholinergic synapse# 5.21E-07

10 Hepatitis C 1.40E-20
Adrenergic signaling in 

cardiomyocytes#
1.10E-12

Adrenergic signaling in 
cardiomyocytes#

7.27E-07

*Common KEGG pathway terms between DAV-SP and DAV-BAT. #Common KEGG pathway terms between DAV-BAT and BAT-BAT. DAV-SP, enrichment analysis using 
DAVID from targets predicted by TCMSP; DAV-BAT, enrichment analysis using DAVID from targets predicted by BATMAN-TCM; BAT-BAT, enrichment analysis using 
BATMAN-TCM from targets predicted by same BATMAN-TCM; Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes

Discussion

    The popular bioinformatics databases for network 

analysis of herbal medicines, TCMSP and BATMAN-TCM, use 

different algorithms for target prediction. The main 

difference was whether they are focusing on molecular and 

ligand structural pattern analysis or on a comparison of the 

similarities12,13,24). Since the main algorithmic difference 

appears in ingredient-target prediction process, we expected 

that prediction result from same single herb, licorice, would 

be different between them. In the analysis using licorice, a 

representative herb in TCM, the first difference was found in 
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the ingredient-target network. Only seven common 

ingredients and 79 targets were found between TCMSP and 

BATMAN-TCM. This heterogeneity of the predicted targets 

between two databases would inevitably lead to different 

prediction results. In addition, TCMSP revealed a 

phenomenon of over-concentrated prediction to quercetin 

and kaempferol, which has been pointed out as a limitation 

of TCM network analysis thus far25). Whereas, BATMAN-TCM 

seems to be less affected by this phenomenon. This study 

also found that quercetin and kaempferol are among the 

top-10 ingredients in TCMSP. The top-10 ingredients in 

BATMAN-TCM included glycyrrhetic acid and glycyrrhetinic 

acid, which are the main active ingredients in licorice for 

treatment of diseases and are also responsible for the side 

effect of pseudoaldosteronism26,27). Among the top-10 targets 

of TCMSP and BATMAN-TCM, the common targets were AR 

and ESR1, where AR is androgen receptor and ESR1 is 

estrogen receptor. This result is consistent with the fact that 

licorice has been studied for its effects on sex hormones28). 

     The three scenarios from different combinations of 

databases and a tool showed different trends in enrichment 

analyses of GO-terms and KEGG pathway terms. DAV-SP 

scenario showed a result related to cancer whereas 

DAV-BAT and BAT-BAT combinations both using the same 

target list predicted by BATMAN-TCM showed a similar 

trend related to neurotransmission. Of the top-10 

ingredients in TCMSP, quercetin and kaempferol have 

antioxidant, anti-inflammatory, and anti-cancer properties, 

which are considered relevant to the cancer-related 

result29,30). All three scenarios showed common association 

to heart. Licorice’s effects on the heart have also been well 

studied including severe side effects31). 

     As we mentioned earlier, TCMSP seems to be biased 

toward cancer-related prediction. This study’s result from 

DAV-SP scenario also showed similar cancer-related 

prediction results. BAT-BAT scenario showed an ambiguous 

GO-term trend. Similar prediction results of enrichment 

analysis were shown between DAV-BAT and BAT-BAT. From 

this result, we may infer that the main factor contributing 

to the difference in prediction trends lies in the target list, 

other than the tool for analysis such as DAVID. Since the 

enrichment analysis process used only the two different 

target lists of licorice derived from each database, the 

differences in the target lists influenced the analysis 

process, resulting in the tendency toward different 

pathways. The TCMSP ingredient-target list dataset is 

constructed by mapping target proteins from DrugBank and 

ingredient datasets, and it is validated by the herbal 

ingredient target (HIT) database, which is bases on the 

latest abstracts from PubMed13). In contrast, BATMAN-TCM 

constructs its target list based on a ingredient dataset 

similar to FDA-approved ingredients. These differences in 

the foundational datasets and the algorithms used to 

construct the target lists are considered to have led to the 

tendency toward different pathways results. These 

differences in tendencies are encompassed within the 

already studied pharmacological actions of licorice, which 

has been shown to possess inhibitory effects on various 

cancer cells, including cervical, breast, liver, coon, 

pancreatic, and prostate cancers. In addition, licorice exibits 

anti-inflammatory and immunomodulatory effects which 

have close relationship with anti-tumor activity. Licorice 

acts similarly to adrenal cortex hormones, and has been 

researched for its memory-enhancing and neuroprotective 

properties32,33). Therefore, the differences between the 

databases described above appear to reflect tendencies in 

different directions within the scope of previously studied 

results. The most frequent diseases commonly predicted by 

two databases were neoplasm; followed by circulatory 

system; symptoms, signs or clinical findings; and nervous 

system. The diseases collected from the in vivo study 

literatures that were not predicted by the bioinformatics 

databases were as follows; 60% not predicted by TCMSP; 

48% not predicted by BATMAN-TCM; and 45% not predicted 

by both databases. In addition, among the 24 diseases 

commonly predicted by TCMSP and BATMAN-TCM, three 

traditional indications of licorice similar to the modern 

disease names were found; epilepsy (epileptic seizures); 

forgetfulness (Alzheimer’s disease); and painful urination 

with blood and lower back pain of women (endometriosis).

     TCMSP seems to have advantages of including different 

protein families within the prediction range and allowing 

researchers to adjust pharmacokinetic parameters such as 

OB and DL freely. BATMAN-TCM seems to have advantages 

of embedding real-world features such as anatomic 

therapeutic chemical (ATC) classification system and side 

effect data involved in the prediction algorithm. In addition, 

BATMAN-TCM provides prediction pages such as GO-term, 

KEGG pathway, and disease, all in one with P-value. 

Meanwhile, TCMSP does not provide a P-value in prediction 

results, which induces researchers to use other tools for 

analysis, such as DAVID. TCMSP showed an 

over-concentrated tendency toward specific ingredients and 

cancer-related disease prediction. BATMAN-TCM does not 

provide a specific explanation for various cut-off scores 

from 10 to 1,000. 
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     Analyzing herb with different databases will result in 

different predicted targets, and therefore different predicted 

GO-terms, KEGG pathway terms and diseases. If the 

commonalities between the predicted ingredient or target 

lists from different databases are minimal, resulting in high 

heterogeneity, the expected effects of a single herb may 

appear fragmented and predicted separately. Therefore, 

when aiming to rigorously compare differences between 

databases, it is recommended to verify the extent to which 

the ingredient or target lists share commonalities above a 

certain threshold before proceeding with the study. Another 

option would be to merge predicted ingredient or target lists 

from at least two TCM bioinformatics databases, which could 

lead to unbiased, complete, and wider range of results. 

     This study has a few limitations. First, the differences 

between two TCM bioinformatics databases may not be 

explained enough because we only one herb is used for 

analysis. Second, we were unable directly verify the impact 

of differences of prediction algorithms on differences in 

actual prediction results. Thrid, we were unable to 

distinguish between licorice-treated and licorice-induced 

disease names from the predictions results. Fourth, the 

analysis to determine whether the observed differences in 

prediction results are statistically significant has not been 

performed. Fifth, the validation process of comparing the 

database predictions with actual biological experimental 

results has not been performed. Sixth, the list of diseases 

derived from a decade of in vivo studies was not enough to 

be considered as real-world data for verification of disease 

prediction results. Lastly, the high heterogeneity of target 

lists between databases made it inadequate to compare their 

functionality and predictive capabilities under the same 

conditions. Therefore, further study needs to be conducted 

using various herbs or herbal formulas with larger-scale 

real world dataset with the statistical significance and the 

experimental validation process. 

     The significance of this study is that we explored the 

process and reasons for the difference in prediction results 

compared to previous studies that simply analyzed the 

difference between prediction results. This study may be 

helpful to researchers who try to discover candidate 

ingredients from herbal medicine, to understand the 

mechanisms of action of herbal medicine, or to validate 

TKM theories. 

Conclusions

     These results indicate that differences in target lists 

predicted from different databases lead to differences in 

enrichment analysis, which in turn leads to differences in 

disease prediction coverage. The most important thing is to 

make sure that the characteristics of TCM bioinformatics 

databases match researchers’ own research objectives. 

Using a merged target list predicted by at least two TCM 

bioinformatics databases for analysis may provide more 

unbiased, complete, and wider range of results than using a 

single database without recognizing their characteristics. 
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