DOI QR코드

DOI QR Code

Comparative Analysis of Yukmijihwang-tang and Palmijihwang-tang: Lifespan Extension and Kidney Function Improvement in Aging Models

  • Geonhui Kang (Korean Medicine Science Research Division, Korea Institute of Oriental Medicine) ;
  • You Mee Ahn (Korean Medicine Science Research Division, Korea Institute of Oriental Medicine) ;
  • So Min Lee (Korean Medicine Science Research Division, Korea Institute of Oriental Medicine) ;
  • Seulgi Lee (Korean Medicine Science Research Division, Korea Institute of Oriental Medicine) ;
  • Dong Seok Cha (College of Pharmacy, Woosuk University) ;
  • Jeeyoun Jung (Korean Medicine Science Research Division, Korea Institute of Oriental Medicine)
  • Received : 2024.09.24
  • Accepted : 2024.10.25
  • Published : 2024.10.25

Abstract

Aging is associated with a decline in physical and mental functions, necessitating support strategies to extend the healthy life expectancy (HLE). Traditional Asian herbal medicines, such as Yukmijihwang-tang (YM) and Palmijihwang-tang (PM), are used to enhance HLE by improving the kidney function and treating age-related conditions. In this study, we aimed to investigate the effects of YM and PM on lifespan extension and kidney aging marker and aging-related gene expression levels in mice and elucidate the underlying hormonal mechanisms. A lifespan assay was conducted using Caenorhabditis elegans to compare and analyze the effects of YM and PM on HLE and kidney function. Subsequently, aging markers and kidney function were analyzed in aged mice treated with YM and PM. Additionally, RNA sequencing of kidneys was performed to analyze the RNA expression levels related to the hormonal pathways of YM and PM. YM and PM significantly increased the lifespan of C. elegans in a dose-dependent manner. In aged mice, YM and PM restored the kidney aging markers, including the plasma klotho and albumin levels, glomerular filtration rate, urine volume, osmolality, and sodium levels. Transcriptomic analysis revealed distinct gene expression patterns. Although both YM and PM regulated similar pathways, PM affected 4.5-times more genes associated with the mitochondria, endoplasmic reticulum, and their membranes than YM. Furthermore, YM and PM modulated the hormone metabolism genes associated with longevity, highlighting their potential to mitigate age-related conditions through diverse molecular pathways. This study demonstrated the potential of YM and PM to extend HLE by modulating gene expression and improving kidney function, thus providing promising natural therapeutics with few side effects.

Keywords

Acknowledgement

This study was supported by the Korea Institute of Oriental Medicine (KSN2312021) and a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2022R1A2C2092786).

References

  1. Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022;7(1):391. https://pubmed.ncbi.nlm.nih.gov/36522308/. 
  2. Poganik JR, Gladyshev VN. We need to shift the focus of aging research to aging itself. Proc Natl Acad Sci U S A 2023;120(37):e2307449120. https://pubmed.ncbi.nlm.nih.gov/37682890/. 
  3. Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Nat Rev Drug Discov 2020;19(8):513-32. https://pubmed.ncbi.nlm.nih.gov/32467649/. 
  4. GBD 2021 Demographics Collaborators. Demographics collaborators, 2024. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 2021;403(10440):1989-2056. https://pubmed.ncbi.nlm.nih.gov/38484753/. 
  5. Tsuji I.. Epidemiologic Research on Healthy Life Expectancy and Proposal for Its Extension: A, rev. English version of Japanese in the Journal of the Japan Medical Association 2019;148(9):1781-4. JMA J 2020;3(3):149-53. https://pubmed.ncbi.nlm.nih.gov/33150248/. 
  6. Chudasama YV, Khunti K, Gillies CL, Dhalwani NN, Davies MJ, Yates T, et al. Healthy lifestyle and life expectancy in people with multimorbidity in the UK Biobank: A longitudinal cohort study. PLoS Med 2020;17(9):e1003332. https://pubmed.ncbi.nlm.nih.gov/32960883/. 
  7. Fadnes LT, Okland JM, Haaland OA, Johansson KA. Estimating impact of food choices on life expectancy: A modeling study. PLoS Med 2022;19(2):e1003889. https://pubmed.ncbi.nlm.nih.gov/35134067/. 
  8. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances Healthspan and extends lifespan. Front Endocrinol 2021;12:718942. https://pubmed.ncbi.nlm.nih.gov/34421827/. 
  9. de Jager J, Kooy A, Lehert P, Wulffele MG, van der Kolk J, Bets D, et al. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: randomised placebo controlled trial. BMJ 2010;340:c2181. https://pubmed.ncbi.nlm.nih.gov/20488910/.  10/
  10. Stevenson-Hoare J, Leonenko G, Escott-Price V. Comparison of long-term effects of metformin on longevity between people with type 2 diabetes and matched non-diabetic controls. BMC Public Health 2023;23(1):804. https://pubmed.ncbi.nlm.nih.gov/37131166/. 
  11. Kwon S, Kim YC, Park JY, Lee J, An JN, Kim CT, et al. The long-term effects of metformin on patients with Type 2 diabetic kidney disease. Diabetes Care 2020;43(5):948-55. https://pubmed.ncbi.nlm.nih.gov/32132005/. 
  12. Chen W, Wang J, Shi J, Yang X, Yang P, Wang N, et al. Longevity effect of Liuwei dihuang in both Caenorhabditis Elegans and Aged Mice. Aging Dis 2019;10(3):578-91. https://pubmed.ncbi.nlm.nih.gov/31165002/. 
  13. Sangha JS, Sun X, Wally OS, Zhang K, Ji X, Wang Z, et al. Liuwei Dihuang (LWDH), a traditional Chinese medicinal formula, protects against β-amyloid toxicity in transgenic Caenorhabditis elegans. PLoS ONE 2012;7(8):e43990. https://pubmed.ncbi.nlm.nih.gov/22952840/. 
  14. Tseng YT, Chang FR, Lo YC. The Chinese herbal formula Liuwei dihuang protects dopaminergic neurons against Parkinson's toxin through enhancing antioxidative defense and preventing apoptotic death. Phytomedicine 2014;21(5):724-33. https://pubmed.ncbi.nlm.nih.gov/24411708/. 
  15. Hwang J, Jung H, Song B. Case report for kidney Yang deficiency syndrome Patient. The Journal of Internal Korean Medicine, 2014;35:349-53. 
  16. Isobe H, Yamamoto K, Cyong JC. Effects of hachimi-jio-gan (ba-wei-di-huang-wan) on blood flow in the human central retinal artery. Am J Chin Med 2003;31(3):425-35. https://pubmed.ncbi.nlm.nih.gov/12943173/. 
  17. Jung H, Lee H, Lee J, Kim D. Clinical study of effect to the health-growth after the administration of Boyangsungjangtang to the prepuberty children. J Pediatr Korean Med 2001;15(1):47-57. 
  18. Lee M, Son I. Effects of aqua-acupuncture of Yukmijihwangtang and Palmijihwangtang water extracts on the renal function. J Korean Acupunct Moxibustion Soc 1998;15(2):255-77. 
  19. Seo Y, Lee E, Bae H, Shin M, Hong C. Antioxidant effects of the herbs composing Yukmijihwang-tang on PC12 cell. Korean J Orient Physiol Pathol 2003;17(1):203-8. 
  20. Neild GH. Life expectancy with chronic kidney disease: an educational review. Pediatr Nephrol 2017;32(2):243-8. https://pubmed.ncbi.nlm.nih.gov/27115888/. 
  21. Kim HS, Jeon DH, Oh MS. Healing effect of Yukmijihwang-tang on fracture factor and morphological changes in femur fractured mice. J Korean Med Rehabil 2020;30(4):17-30. 
  22. Lee B. Symptom Identification Treatment. Seongbosa: Seoul, 1992, 467-8. 
  23. Roh M, Lee J, Jun H, Han Y, Kim H, Leem J. A Patient with Moderate Insomnia Improved after Treatment with Yukmijihwang-tang (Liuwei Dihuang tang), Hwangryunhaedok-tang (Huanglian Jiedu tang), and electroacupuncture: A Case Report. J Int Korean Med 2020;41(3):494-501. 
  24. Park HH, Jung Y, Lee SV. Survival assays using Caenorhabditis elegans. Mol Cells 2017;40(2):90-9. https://pubmed.ncbi.nlm.nih.gov/28241407/. 
  25. Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974;77(1):71-94. https://pubmed.ncbi.nlm.nih.gov/4366476/. 
  26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29(1):15-21. https://pubmed.ncbi.nlm.nih.gov/23104886/.  104886/
  27. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31(2):166-9. https://pubmed.ncbi.nlm.nih.gov/25260700/. 
  28. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997;390(6655):45-51. https://pubmed.ncbi.nlm.nih.gov/9363890/. 
  29. Saito Y, Yamagishi T, Nakamura T, Ohyama Y, Aizawa H, Suga T, et al. Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun 1998;248(2):324-29. https://pubmed.ncbi.nlm.nih.gov/9675134/. 
  30. Stevens LA, Coresh J, Greene T, Levey AS. Assessing kidney function-measured and estimated glomerular filtration rate. N Engl J Med 2006;354(23):2473-83. https://pubmed.ncbi.nlm.nih.gov/16760447/. 
  31. Sands JM, Layton HE. The physiology of urinary concentration: an update. Semin Nephrol 2009;29(3):178-95. https://pubmed.ncbi.nlm.nih.gov/19523568/. 
  32. Reddi AS. Interpretation of urine electrolytes and osmolality, in: Fluid, Electrolyte and Acid-Base Disorders. Springer, Cham, 2018. 
  33. Wu Z, Qian J, Feng C, Chen Z, Gao X, Liu Y, et al. A review of Aconiti Lateralis Radix Praeparata (Fuzi) for kidney disease: phytochemistry, toxicology, herbal processing, and pharmacology. Front Pharmacol 2024;15:1427333. https://pubmed.ncbi.nlm.nih.gov/39021829/. 
  34. Fontecha-Barriuso M, Lopez-Diaz AM, Guerrero-Mauvecin J, Miguel V, Ramos AM, Sanchez-Nino MD, et al. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease. Antioxidants (Basel) 2022;11(7):1356. https://pubmed.ncbi.nlm.nih.gov/35883847/. 
  35. Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024;14:1344271. https://pubmed.ncbi.nlm.nih.gov/38283280/. 
  36. Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells 2022;12(1):88. https://pubmed.ncbi.nlm.nih.gov/36611880/. 
  37. Surugiu R, Iancu MA, Vintilescu sB, Stepan MD, Burdusel D, Genunche-Dumitrescu AV, et al. Molecular Mechanisms of Healthy Aging: The Role of Caloric Restriction, Intermittent Fasting, Mediterranean Diet, and Ketogenic Diet-A Scoping Review. Nutrients. 2024;16(17):2878. https://pubmed.ncbi.nlm.nih.gov/39275194/. 
  38. Tamma G, Goswami N, Reichmuth J, De Santo NG, Valenti G. Aquaporins, vasopressin, and aging: current perspectives. Endocrinology. 2015;156(3):777-88. https://pubmed.ncbi.nlm.nih.gov/25514088/. 
  39. Egan BM, Scharf A, Pohl F, Kornfeld K. Control of aging by the renin-angiotensin system: a review of C. elegans, Drosophila, and mammals. Front Pharmacol. 2022;13:938650. https://pubmed.ncbi.nlm.nih.gov/36188619/. 
  40. Otto GP, Rathkolb B, Oestereicher MA, Lengger CJ, Moerth C, Micklich K, et al. Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus musculus). J Am Assoc Lab Anim Sci. 2016;55(4):375-86. https://pubmed.ncbi.nlm.nih.gov/27423143/. 
  41. Miller GD, Teramoto M, Smeal SJ, Cushman D, Eichner D. Assessing serum albumin concentration following exercise-induced fluid shifts in the context of the athlete biological passport. Drug Test Anal. 2019;11(6):782-91. https://pubmed.ncbi.nlm.nih.gov/30690899/.