DOI QR코드

DOI QR Code

Thermal Behavior Simulation of Lithium Iron Phosphate Energy Storage Battery

  • Hao Yu (School of Nuclear Science and Engineering, North China Electric Power University) ;
  • Jun Cai (School of Nuclear Science and Engineering, North China Electric Power University) ;
  • Xiaoyan Zhang (Power China Guiyang Engineering Corporation Limited)
  • Received : 2024.03.25
  • Accepted : 2024.06.16
  • Published : 2024.11.30

Abstract

The heat dissipation of a 100 Ah lithium iron phosphate energy storage battery (LFP) was studied using Fluent software to model transient heat transfer. The cooling methods considered for the LFP include pure air and air coupled with phase change material (PCM). We obtained the heat generation rate of the LFP as a function of discharge time by fitting experimental data. Numerical simulation results indicated that air cooling is only appropriate for the battery with discharge rates of 2C or less. Air cooling is not suitable for the battery with discharge rates greater than 2C due to security requirements. Cooling with air coupled with PCM demonstrated that a PCM thickness of 8cm achieved the highest cooling efficiency. The use of air coupled with PCM for heat dissipation reduced the peak temperature of the LFP, at a discharge rate of 5C, by 18.55℃.

Keywords

Acknowledgement

This work was supported by the Research on Planning and Dispatching Key Technology of Water-Wind-Solar-Storage Integration Bases(YJZD2022-01).

References

  1. G. Wang, X. Negnevistsky, M. Negnevitsky, and H. Zhang, J. Power Sources, 2021, 501, 230001.
  2. Y. Ding, H. Ji, M. Wei, and R. Liu, Int. J. Heat Mass Transfer, 2022, 183, 122178.
  3. J. Cao, M. Luo, X. Fang, Z. Ling, and Z. Zhang, Energy, 2020, 191, 116565.
  4. S. Panchal, M. Mathew, R. Fraser, and M. Fowler, Appl. Therm. Eng., 2018, 135, 123-132.
  5. G. Li and S. Li, ECS Trans., 2015, 64(33), 1.
  6. P. Vyroubal, T. Kazda, J. Maxa, and J. Vondrak, ECS Trans., 2015, 70(1), 269-273.
  7. L. H. Saw, Y. Ye, A. A. O. Tay, W. T. Chong, S. H. Kuan, and M. C. Yew, Appl. Energy, 2016, 177, 783-792.
  8. M. Ye, Y. Xu, and Y. Huangfu, Energy Procedia, 2018, 152, 643-648.
  9. L. Yuan, T. Dubaniewicz, I. Zlochower, R. Thomasn, and N. Rayyan, Process Saf. Environ. Prot., 2020, 144, 186-192.
  10. A. W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, and V. Hacker, RSC Adv., 2014, 4, 3633-3642.
  11. Y. Jin, Z. Zheng, D. Wei, X. Jiang, H. Lu, L. Sun, F. Tao, D. Guo, Y. Liu, J. Gao, and Y. Cui, Joule, 2020, 4(8), 1714-1729.
  12. W. Mei, H. Chen, J. Sun, and Q. Wang, Sustainable Energy Fuels, 2019, 3, 148-165.
  13. J. Chiew, C. S. Chin, W. D. Toh, Z. Gao, J. Jian, and C. Z. Zhang, Appl. Therm. Eng., 2019, 147, 450-463.
  14. H. Park, J. Power Sources, 2013, 239, 30-36.
  15. N. Nieto, L. Diaz, J. Gastelurrutia, F. Blanco, J. C. Ramos, and A. Rivas, J. Power Sources, 2014, 272, 291-302.
  16. C. Zhao, W. Cao, T. Dong, and F. Jiang, Int. J. Heat Mass Transf., 2018, 120, 751-762.
  17. J. Zhao, C. Wu, and Z. Rao, Appl. Therm. Eng., 2020, 174, 115304.
  18. L. Ling, W. Binbin, H. Jian, and Q. Peng, J. Power Supply, 2023, Online First. http://kns.cnki.net/kcms/detail/12.1420.TM.20230331.1807.004.html
  19. H. Shuntao, L. Xinli, and L. Yifei, Power Technol., 2023, 47(11), 1414-1418.
  20. X. Huimin, P. Yuezhong, H. Lixue, W. Wei, and T. Hong, Electric Power, 2024, Online First. http://kns.cnki.net/kcms/detail/11.3265.TM.20240407.0833.002.html
  21. M. Jing, D. Zhiyong, S. Yongfei, and S. Yasong, Proceeding of the CSEE, 2023, 43(17), 6737-6745.
  22. R. Spotnitz and J. Franklin, J. Power Sources, 2003, 113(1), 81-100.
  23. D. Bernardi, E. Pawlikowski, and J. Newman, J. Electrochem. Soc., 1985, 132, 5-12.
  24. J. Song, H. Lee, S. Kim, D. Kang, S. Jung, H. Lee, T.-S. Kwon, and Y. M. Lee, Front. Mater., 2022, 9, 824168.
  25. E. Kim, J. Song, C. B. Dzakpasu, D. Kim, J. Lim, D. Kim, S. Park, H. Lee, T.-S. Kwon, and Y. M. Lee, J. Energy Storage, 2023, 72, 108627.
  26. S. Li, W. Xuezhe, D. Haifeng, and S. Zechang, Automotive Engineering, 2013, 35(3), 285-291.
  27. W. Lu and J. Prakash, J. Electrochem. Soc., 2003, 150(3), A262.
  28. J. W. Murdock (ed.), Fundamental Fluid Mechanics for the Practicing Engineer, CRC Press, 2018.
  29. Z. An, X. Zhang, H. Zhu, and C. Zhang, Energy Storage Sci. Technol., 2022, 11(1), 211-220.