DOI QR코드

DOI QR Code

Reuse of the Surrounding Powder Used as a Na-Source in the Fabrication of Sodium-Beta-Alumina Solid Electrolyte by Vapor-Phase Conversion Method

  • Do-Young Go (Department of Materials Chemistry and Engineering, Konkuk University) ;
  • Ha Young Kim (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST)) ;
  • Keeyoung Jung (Battery Materials Division, Research Institute of Industrial Science and Technology (RIST)) ;
  • Sungki Lim (Department of Materials Chemistry and Engineering, Konkuk University)
  • Received : 2024.04.12
  • Accepted : 2024.05.21
  • Published : 2024.11.30

Abstract

While Na/NiCl2 secondary batteries offer high safety and excellent performance, their high price inhibits their commercialization. Two approaches are proposed to solve this problem: (1) automatic production by making cells of a flat plate structure and (2) lowering the price of sodium-beta-alumina solid electrolyte (BASE), a key component. In general, a thin and wide disk-type BASE for a planar Na/NiCl2 battery is prepared from zirconia-toughened alumina (ZTA) by a vapor-phase conversion (VPC) process. In the process, Na-β"-Al2O3 powder, which is usually used as surrounding powder to supply sodium, is used once, then discarded. In this study, two methods were attempted to reduce the BASE cost fabricated by the VPC process. The first is the reuse of the surrounding powder in the VPC. The number of reuses has been up to three times. The second is that the surrounding powder is used as-is by mixing raw material powders, that is α-Al2O3, Na2-CO3, and Li2CO3, instead of Na-β"-Al2O3 powder. This allows omission of the calcination process required for Na-β"-Al2O3 synthesis. Furthermore, the properties of the BASE prepared by VPC with the reused surrounding powder were analyzed, and their changes were investigated.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT), through the International Cooperative R&D program (P0018443).

References

  1. R. Benato, N. Cosciani, G. Crugnola, S. D. Sessa, G. Lodi, C. Parmeggiani, and M. Todeschini, J. Power Sources, 2015, 293, 127-136.
  2. J. L. Sudworth, J. Power Sources, 2001, 100(1-2), 149-163.
  3. K. Jung, H.-J. Chang, J. F. Bonnett, N. L. Canfield, V. L. Sprenkle, and G. Li, J. Power Sources, 2018, 396, 297-303.
  4. X. Lu, G. Li, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, and Z. Yang, J. Power Sources, 2012, 215, 288-295.
  5. X. Lu, G. Coffey, K. Meinhardt, V. Sprenkle, Z. Yang, and J. P. Lemmon, ECS Trans., 2010, 28(22), 7.
  6. K. B. Hueso, V. Palomares, M. Armand, and T. Rojo, Nano Res., 2017, 10, 4082-4114.
  7. G. Li, X. Lu, J. Y. Kim, V. V. Viswanathan, K. D. Meinhardt, M. H. Engelhard, and V. L. Sprenkle, Adv. Energy Mater., 2015, 5(12), 1500357.
  8. P. Parthasarathy and A. V. Virkar, J. Electrochem. Soc., 2013, 160, A2268.
  9. L. Ghadbeigi, A. Szendrei, P. Moreno, T. D. Sparks, and A. V. Virkar, Solid State Ion., 2016, 290, 77-82.
  10. N. Li, Z. Wen, Y. Liu, X. Xu, J. Lin, and Z. Gu, J. Eur. Ceram. Soc., 2009, 29(14), 3031-3037.
  11. X. Lu, J. R. G. Evans, and S. N. Heavens, J. Eur. Ceram. Soc., 2012, 32(16), 4219-4228.
  12. S. C. Ligon, M.-C. Bay, M. V. F. Heinz, C. Battaglia, T. Graule, and G. Blugan, Materials, 2020, 13(2), 433.
  13. K. Y. Jung, Y.-C. Park, S. Son, Y. Lee, C.-S. Kim, D. Jin, W. Shim, H. J. Chang, G. Li, and V. Sprenkle, Meet. Abstr., 2017, MA2017-02, 81.
  14. C. A. Beevers and M. A. S. Ross, Z. Kristallogr., 1937, 97(1-6), 59-66.
  15. M. V. F. Heinz, M.-C. Bay, U. F. Vogt, and C. Battaglia, Acta Mater., 2021, 213, 116940.
  16. G. W. Schafer, H. J. Kim, and F. Aldinger, Solid State Ion., 1997, 97(1-4), 285-289.
  17. F. R. Feret, D. Roy, and C. Boulanger, Spectrochim. Acta B, 2000, 55(7), 1051-1061.
  18. C. R. Peters, M. Bettman, J. W. Moore, and M. D. Glick, Acta Crystallogr. B, 1971, 27(9), 1826-1834.
  19. G. Yamaguchi and K. Suzuki, Bull. Chem. Soc. Jpn., 1968, 41(1), 93-99.
  20. S. Sartori, A. Martucci, A. Muffato, and M. Guglielmi, J. Eur. Ceram. Soc., 2004, 24(6), 911-914.
  21. D.-H. Lee, S.-S. Han, Y.-H. Kim, and S.-K. Lim, J. Ind. Eng. Chem., 2019, 76, 366-373.
  22. A. V. Virkar, J.-F. Jue, and K.-Z. Fung, Alkali-metal-β- and β"-alumina and gallate polycrystalline ceramics and fabrication by a vapor phase method, U.S. Patent No. 6,117,807, 2000.
  23. A. Sasidharanpillai, H. Kim, Y. Cho, D. Kim, S. Lee, K. Jung, and Y. Lee, J. Korean Electrochem. Soc., 2022, 25(4), 191-200.
  24. A. K. Ray and E. C. Subbarao, Mater. Res. Bull., 1975, 10(6), 583-590.
  25. D.-H. Lee, D.-G. Lee, and S.-K. Lim, Ceram. Int., 2021, 47(17), 24743-24751.
  26. C. Schmid, J. Mater. Sci. Lett., 1986, 5, 263-266.
  27. F. A. Elrefaie and W. W. Smeltzer, Solid State Ion., 1984, 12, 517-524.