DOI QR코드

DOI QR Code

A Functional N/S-doped Carbon Electrode from a Carbonized Bagasse Activated with Water Vapor

  • Fitria Rahmawati (Research Group of Solid-State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University) ;
  • Ainaya Febi Amalia (Research Group of Solid-State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University) ;
  • Arikasuci Fitonna Ridassepri (Research Group of Solid-State Chemistry & Catalysis, Chemistry Department, Sebelas Maret University) ;
  • Jun Nakamura (Department of Engineering Science, The University of Electro-Communications (UEC- Tokyo)) ;
  • Younki Lee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • Received : 2024.01.02
  • Accepted : 2024.04.23
  • Published : 2024.11.30

Abstract

This research used solid waste from sugarcane production, named bagasse, as raw material for a functional carbon electrode. The bagasse was carbonized to produce carbon powder and, following activation with water vapor at 700℃. The activated carbon was doped with N and S to improve its electrochemical properties by treating it with thiourea precursor and heating it at 850℃ under nitrogen flow to produce N/S-doped carbon (NSCE). The produced carbon was then characterized to understand the specific diffraction pattern, molecular vibrations, and surface morphology. The result found that the NSCE showed two broad diffraction peaks at 23° and 43°, corresponding to [002] and [100] crystal planes following JCPDS75-1621. FTIR spectra showed some O-H, C-H, C-O, and C=C peaks. Peaks of C=N, C-N, and S-H demonstrate the presence of N/S within the NSCE. Raman analysis revealed that N/S doping caused structure defects within the single C6 layer networks, providing carbon vacancies (VC••••) because of C replacement by N (N'C) and S (S"C). Meanwhile, XPS analysis showed N/S introduction to the C network by revealing peaks at 168.26 eV and 169.55 eV, corresponding to S2p3/2 and S2p1/2, and 171.95 eV corresponds to C-SO3-C, indicating the presence of S within the thiol group attached to the carbon. Meanwhile, N1s are revealed at 402.4 eV and 405.5 eV, confirming pyrrolic nitrogen (N-5) and quaternary nitrogen (N-Q). The electrochemical analysis found that the reaction within the prepared-NSCE/NaClO4/Na was reversible, with an onset potential of 0.1 V vs. Na/Na+, explaining the intercalation and deintercalation of sodium ions. The sodium battery full cell showed an excellent battery performance with an initial charging-discharging capacity of 720 mAh g-1 and 570 mAh g-1, respectively, at 0.2C. Meanwhile, a cycling test showed the average Coulombic efficiency of 84.4% and capacity retention of 57% after 50 cycles.

Keywords

Acknowledgement

The authors acknowledge Sebelas Maret University for funding this research through an International Collaborative Research with a contract number of 228/UN27.22/PT.01.03/2023. A part of this work was conducted in The University of Electro-Communications Coordinated Centre for UEC Research Facilities, supported by Advanced Research Infrastructure for Materials and Nanotechnology in Japan (ARIM) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The authors also acknowledge Mr. Yajima's assistance with the XPS analysis.

References

  1. X. Li, X. Zeng, T. Ren, J. Zhao, Z. Zhu, S. Sun, and Y. Zhang, J. Alloys Compd., 2019, 787, 229-238. 
  2. M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, Adv. Funct. Mater. Mater., 2013, 23(8), 947-958. 
  3. D. Larcher and J.-M. Tarascon, Nat. Chem., 2015, 7, 19-29. 
  4. L. Wang, X. Zhao, S. Dai, Y. Shen, and M. Wang, Electrochim. Acta, 2019, 314, 142-150. 
  5. J. Xiang, W. Lv, C. Mu, J. Zhao, and B. Wang, J. Alloys Compd., 2017, 701, 870-874. 
  6. S. Alvin, D. Yoon, C. Chandra, H. S. Cahyadi, J.-H. Park, W. Chang, K. Y. Chung, and J. Kim, Carbon, 2019, 145, 67-81. 
  7. N. T. Aristote, Z. Song, W. Deng, H. Hou, G. Zou, and X. Ji, J. Power Sources, 2023, 558, 232517. 
  8. Y. Meng, R. Lin, M. Duan, M. Du, H. Zhang, G. Ren, and F. Zhu, J. Mater. Sci.: Mater. Electron., 2021, 32, 8295-8303. 
  9. Q. Jin, W. Li, K. Wang, H. Li, P. Feng, Z. Zhang, W. Wang, and K. Jiang, Adv. Funct. Mater., 2020, 30(14), 1909907. 
  10. F. Shen, W. Luo, J. Dai, Y. Yao, M. Zhu, E. Hitz, Y. Tang, Y. Chen, V. L. Sprenkle, X. Li, and L. Hu, Adv. Energy Mater., 2016, 6(14), 1600377. 
  11. E. M. Lotfabad, J. Ding, K. Cui, A. Kohandehghan, W. P. Kalisvaart, M. Hazelton, and D. Mitlin, ACS Nano, 2014, 8(7), 7115-7129. 
  12. Y. Li, Y.-S. Hu, M.-M. Titirici, L. Chen, and X. Huang, Adv. Energy Mater., 2016, 6(18), 1600659. 
  13. D. Qin, Z. Liu, Y. Zhao, G. Xu, F. Zhang, and X. Zhang, Carbon, 2018, 130, 664-671. 
  14. V. Simone, A. Boulineau, A. de Geyer, D. Rouchon, L. Simonin, and S. Martinet, J. Energy Chem., 2016, 25(5), 761-768. 
  15. S. Qiu, L. Xiao, M. L. Sushko, K. S. Han, Y. Shao, M. Yan, X. Liang, L. Mai, J. Feng, Y. Cao, X. Ai, H. Yang, and J. Liu, Adv. Energy Mater., 2017, 7(17), 1700403. 
  16. Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, and J. Bao, Carbon, 2018, 127, 658-666. 
  17. Y. Liu, D. J. Lee, Y. Lee, P. Raghavan, R. Yang, F. Ramawati, and J.-H. Ahn, Clean Technol., 2022, 28(2), 97-102. 
  18. Dwiyaniti M., Barruna A. G. E., R. M. Naufal, I. Subiyanto, R. Setiabudy, and C. Hudaya, IOP Conf. Ser.: Mater. Sci. Eng., 2020, 909, 012018. 
  19. A. M. Heniegal, M. A. Ramadan, A. Naguib, and I. S. Agwa, Case Stud. Constr. Mater., 2020, 13, e00397. 
  20. L. A. Rahmawati, Jurnal EnviScience, 2020, 4(1), 46-57. 
  21. F. Rahmawati, A. F. Ridassepri, Chairunnisa, A. T. Wijayanta, K. Nakabayashi, J. Miyawaki, and T. Miyazaki, Appl. Sci., 2021, 11(2), 678. 
  22. Chairunnisa, K. Thu, T. Miyazaki, K. Nakabayashi, J. Miyawaki, A. T. Wijayanta, and F. Rahmawati, Evergreen, 2021, 8(1), 249-254. 
  23. A. F. Ridassepri, F. Rahmawati, K. R. Heliani, Chairunnisa, J. Miyawaki, and A. T. Wijayanta, Evergreen, 2020, 7(3), 409-416. 
  24. H.-C. Tao, H.-R. Zhang, J.-B. Li, and W.-Y. Ding, Bioresour. Technol., 2015, 192, 611-617. 
  25. X. Luo, Y. Cai, L. Liu, and J. Zeng, Cellulose, 2019, 26, 4921-4934. 
  26. J. A. Solis-Fuentes, F. Galan-Mendez, M. del R. Hernandez-Medel, R. S. Garcia-Gomez, M. Bernal-Gonzalez, S. Mendoza-Perez, M. del C. and DuranDominguez-de-Bazua, Food Biosci., 2019, 32, 100437. 
  27. S. Gao, Y. Chen, J. Su, M. Wang, X. Wei, T. Jiang, and Z. L. Wang, ACS Nano, 2017, 11(4), 3965-3972. 
  28. P. Xiong, X. Zhao, and Y. Xu, ChemSusChem, 2018, 11(1), 202-208. 
  29. H. Wan and X. Hu , Int. J. Hydrogen Energy, 2019, 44(39), 22250-22262. 
  30. L. Ingemarsson and M. Halvarsson, EDX/SEM Analysis of Boron, Chalmers Univerisity Technology, 2011. 
  31. F. Guo, X. Jiang, X. Jia, S. Liang, L. Qian, and Z. Rao, J. Electroanal. Chem., 2019, 844, 105-115. 
  32. Sun S., Yu Q, Li M, Zhao H, Wu C. Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renew Energy, 2019, 142, 11-19. 
  33. A. M. Puziy, O. I. Poddubnaya, A. Martinez-Alonso, F. Suarez-Garcia, J. M. D. Tascon, Carbon, 2002, 40(9), 1493-1505. 
  34. L. Zhang, L. Tu, Y. Liang, Q. Chen, Z. Li, C. Li, Z. Wang, and W. Li, RSC Adv., 2018, 8, 42280-42291. 
  35. H. A. Baloch, S. Nizamuddin, M. T. H. Siddiqui, N. M. Mubarak, D. K. Dumbre, M. P. Srinivasan, and G. J. Griffin, J. Environ. Chem. Eng., 2018, 6, 6589-6601. 
  36. D. Li, L. Zhang, H. Chen, L.-X. Ding, S. Wang, and H. Wang, Chem.Commun., 2015, 51, 16045-16048. 
  37. Y. Zhang, Z. Sun, H. Wang, Y. Wang, M. Liang, and S. Xue, RSC Adv., 2015, 5, 10430-10439. 
  38. X. Luo, W. Zhang, Y. Han, X. Chen, L. Zhu, W. Tang. J. Wang, T. Yue, and Z. Li, Food Chem., 2018, 258, 214-221. 
  39. G. Zhao, D. Yu, H. Zhang, F. Sun, J. Li, L. Zhu, L. Sun, M. Yu, F. Besenbacher, and Y. Sun, Nano Energy, 2020, 67, 104219. 
  40. F. Rahmawati, A. F. Ridassepri, E. Heraldy, A. T. Wijayanta, D. Rohendi, and D. Purwaningsih, Single N-and double N/S- doping into steam activated- carbon from solid waste of sugarcane production as a potential material for electrode, Acta Polytech., 2024, Under review. 
  41. P. Bai, X. Han, Y. He, P. Xiong, Y. Zhao, J. Sun, and Y. Xu, Energy Storage Mater., 2020, 25, 324-333. 
  42. J. Pan, Y. Sun, Y. Yan, L. Feng, Y. Zhang, A. Lin, F. Huang, and J. Yang, JACS Au, 2021, 1(8), 1208-1216. 
  43. S. Guo, Y. Chen, L. Tong, Y. Cao, H. Jiao, Z. Long, and X. Qiu, Electrochim. Acta, 2022, 410, 140017. 
  44. T. K. Kumaresan, S. A. Masilamani, K. Raman, S. Z. Karazhanov, and R. Subashchandrabose, Electrochim. Acta, 2021, 368, 137574. 
  45. K. Bhawana, A. Roy, N. Chakrabarty, M. Gautam, D. P. Dutta, and S. Mitra, Electrochim. Acta, 2022, 425, 140744. 
  46. C. Senthil, J. W. Park, N. Shaji, G. S. Sim, and C. W. Lee, J. Energy Chem., 2021, 64, 286-295. 
  47. M. Zarei-Jelyani, Re: if discharge capacity is higher than charge capacity in lithium ion half cell from anode?, 2018. Retrieved from: www.researchgate.net/post/if_discharge_capacity_is_higher_than_charge_capacity_in_lithium_ion_half_cell_from_anode/5acdbab0f7b67eeccb3cc99a/citation/download 
  48. N. T. Aristote, K. Zou, A. Di, W. Deng, B. Wang, X. Deng, H. Hou, G. Zou, and X. Ji, Chin. Chem. Lett., 2022, 33(2), 730-742. 
  49. H. Bensouda, C. Hakim, H. Aziam, A. Bacaoui, and I. Saadoune, Mater. Today Proc., 2021, 51, 2066-2070. 
  50. U. Ghani, N. Iqbal, A. A. Aboalhassan, B. Liu, T. Aftab, I. Zada, F. Ullah, J. Gu, Y. Li, S. Zhu, and Q. Liu, J. Colloid Interface Sci., 2022, 611, 578-587. 
  51. W. Nie, H. Cheng, X. Liu, Q. Sun, F. Tian, W. Yao, S. Liang, X. Lu, and J. Zhou, J. Power Sources, 2022, 522, 230994. 
  52. K. A. Raj, M. R. Panda, D. P. Dutta, and S. Mitra, Carbon, 2019, 143, 402-412. 
  53. M. K. Rybarczyk, Y. Li, M. Qiao, Y.-S. Hu, M.-M. Titirici, and M. Lieder, J. Energy Chem., 2019, 29, 17-22.