DOI QR코드

DOI QR Code

Design Principles for Moisture-Tolerant Sulfide-Based Solid Electrolytes and Associated Effect on the Electrochemical Performance of All-Solid-State Battery

  • Ohmin Kwon (LIB materials development group, Research Institute of Industrial Science and Technology, POSCO Global R&D Center) ;
  • Se Young Kim (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Jinyeon Hwang (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Jonghyun Han (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Seungho Yu (Energy Storage Research Center, Korea Institute of Science and Technology) ;
  • Taeeun Yim (Department of Chemistry, Research Institute of Basic Sciences, College of Natural Science, Incheon National University) ;
  • Si Hyoung Oh (Energy Storage Research Center, Korea Institute of Science and Technology)
  • 투고 : 2024.05.21
  • 심사 : 2024.07.04
  • 발행 : 2024.11.30

초록

The grave concern on the safety of Li-ion batteries adopted in commercial electrical vehicles pushes an urgent demand for developing safer all-solid-state batteries (ASSBs), where ion-conducting solid electrolytes play pivotal roles. Much higher conductivity and more ductile nature of sulfide-based electrolytes offers great advantages over conventional oxide materials in terms of manufacturing process difficulty and the battery performance. However, instability of sulfide materials towards atmospheric moisture results in the substantial degradation in the ionic conductivity and the release of hazardous gas. After over a decade of intensive research, various customized strategies based on the specific design rules were developed for each electrolyte to tackle this crucial issue. However, in most cases a moisture tolerance was endowed only after compromising its vital ionic conductivity to some extent. Nevertheless, the actual applications of sulfide electrolytes to ASSBs often lead to improved battery performance by virtue of the interfacial stabilization between oxide-based cathode materials and sulfide-based solid electrolytes. Therefore, it is essential to fully comprehend the critical factors of each atmospheric stabilization technology that potentially affects the eventual battery performance. Herein, we go over the current status of state-of-the-art moisture-stabilizing technologies for each sulfide-based solid electrolyte, summarizing the major effect of each technology on the various aspect of the electrochemical performance upon application. We believe that this review will contribute to achieving effective moisture-stabilization of sulfide-based solid electrolytes, catalyzing the successful commercialization of sulfide-based ASSBs.

키워드

과제정보

This work was financially supported by KIST Institutional Program (2E33272), the National Research Foundation of Korea (NRF-2020M3H4A1A03082978, NRF-2021R1A2C2008680), the Core Research Institute Program, the Basic Science Research Program through the National Research Foundation of Korea, Ministry of Education (NRF-2017R1A6A1A06015181). O. Kwon, and S. Y. Kim contributed equally to this work.

참고문헌

  1. W. Li, J. R. Dahn, and D. S. Wainwright, Science, 1994, 264(5162), 1115-1118.
  2. J. M. Tarascon and M. Armand, Nature, 2001, 414(6861), 359-367.
  3. S. Chu and A. Majumdar, Nature, 2012, 488(7411), 294-303.
  4. A. Manthiram, X. Yu, and S. Wang, Nat. Rev. Mater., 2017, 2(4), 16103.
  5. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, Nat. Energy, 2016, 1(4), 16030.
  6. J. F. M. Oudenhoven, L. Baggetto, and P. H. L. Notten, Adv. Energy Mater., 2011, 1(1), 10-33.
  7. J. Janek and W. G. Zeier, Nat. Energy, 2016, 1(9), 16141.
  8. Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, and G. Ceder, Nature Mater., 2015, 14(10), 1026-1031.
  9. P. Jiang, G. Du, J. Cao, X. Zhang, C. Zou, Y. Liu, and X. Lu, Energy Technol., 2023, 11(3), 2201288.
  10. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, and A. Mitsui, Nature Mater., 2011, 10(9), 682-686.
  11. Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama, and R. Kanno, J. Phys. Chem. Lett., 2018, 9(3), 607-613.
  12. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, and I. T. Han, Nat. Energy, 2020, 5(4), 299-308.
  13. S. Kondo, K. Takada, and Y. Yamamura, Solid State Ion., 1992, 53, 1183-1186.
  14. J. Kim, M. J. Kim, J. Kim, J. W. Lee, J. Park, S. E. Wang, S. Lee, Y. C. Kang, U. Paik, and D. S. Jung, Adv. Funct. Mater., 2023, 33(12), 2211355.
  15. Y. Kato, K. Kawamoto, R. Kanno, and M. Hirayama, Electrochem., 2012, 80(10), 749-751.
  16. A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, and M. Tatsumisago, J. Alloys Compd., 2014, 591, 247-250.
  17. H. Wang, Y. Chen, Z. D. Hood, G. Sahu, A. S. Pandian, J. K. Keum, K. An, and C. Liang, Angew. Chem. Int. Ed., 2016, 55(30), 8551-8555.
  18. Y. E. Choi, K. H. Park, D. H. Kim, D. Y. Oh, H. R. Kwak, Y.-G. Lee, and Y. S. Jung, ChemSusChem, 2017, 10(12), 2605-2611.
  19. Y. Wang, X. Lu, C. Zheng, X. Liu, Z. Chen, W. Yang, J. Lin, and F. Huang, Angew. Chem. Int. Ed., 2019, 58(23), 7673-7677.
  20. N. Ahmad, L. Zhou, M. Faheem, M. K. Tufail, L. Yang, R. Chen, Y. Zhou, and W. Yang, ACS Appl. Mater. Interfaces, 2020, 12(19), 21548-21558.
  21. H. Kwak, K. H. Park, D. Han, K.-W. Nam, H. Kim, and Y. S. Jung, J. Power Sources, 2020, 446, 227338.
  22. H. Tsukasaki, H. Sano, K. Igarashi, A. Wakui, T. Yaguchi, and S. Mori, J. Power Sources, 2022, 524, 231085.
  23. H. Xu, G. Cao, Y. Shen, Y. Yu, J. Hu, Z. Wang, and G. Shao, Energy Environ. Mater., 2022, 5(3), 852-864.
  24. Z. Zhang, J. Zhang, Y. Sun, H. Jia, L. Peng, Y. Zhang, and J. Xie, J. Energy Chem., 2020, 41, 171-176.
  25. H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, and M. Schlosser, Angew. Chem. Int. Ed., 2008, 47(4), 755-758.
  26. Y. Seino, T. Ota, K. Takada, A. Hayashi, and M. Tatsumisago, Energy Environ. Sci., 2014, 7(2), 627-631.
  27. S. Boulineau, M. Courty, J.-M. Tarascon, and V. Viallet, Solid State Ionics, 2012, 221, 1-5.
  28. N. Minafra, S. P. Culver, T. Krauskopf, A. Senyshyn, and W. G. Zeier, J. Mater. Chem. A, 2018, 6(2), 645-651.
  29. J. Zhang, L. Li, C. Zheng, Y. Xia, Y. Gan, H. Huang, C. Liang, X. He, X. Tao, and W. Zhang, ACS Appl. Mater. Interfaces, 2020, 12(37), 41538-41545.
  30. Y. Morino, H. Sano, K. Kawamoto, H. Higuchi, N. Yamamoto, A. Matsuda, K. Fukui, A. Sakuda, and A. Hayashi, J. Phys. Chem. C, 2023, 127(25), 12342-12348.
  31. Y. Guo, H. Guan, W. Peng, X. Li, Y. Ma, D. Song, H. Zhang, C. Li, and L. Zhang, Solid State Ion., 2020, 358, 115506.
  32. Y. Tao, S. Chen, D. Liu, G. Peng, X. Yao, and X. Xu, J. Electrochem. Soc., 2015, 163(2), A96-A101.
  33. A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, and M. Tatsumisago, J. Mater. Chem. A, 2013, 1(21), 6320-6326.
  34. T. Ohtomo, A. Hayashi, M. Tatsumisago, and K. Kawamoto, J. Non-Cryst. Solids, 2013, 364, 57-61.
  35. T. Ohtomo, A. Hayashi, M. Tatsumisago, and K. Kawamoto, J. Solid State Electrochem., 2013, 17, 2551-2557.
  36. G. Liu, D. Xie, X. Wang, X. Yao, S. Chen, R. Xiao, H. Li, and X. Xu, Energy Storage Mater., 2019, 17, 266-274.
  37. S. Hori, K. Suzuki, M. Hirayama, Y. Kato, and R. Kanno, Front. Energy Res., 2016, 4, 38.
  38. T. Kaib, S. Haddadpour, M. Kapitein, P. Bron, C. Schroder, H. Eckert, B. Roling, and S. Dehnen, Chem. Mater., 2012, 24(11), 2211-2219.
  39. G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, and C. Liang, Energy Environ. Sci., 2014, 7(3), 1053-1058.
  40. G. Sahu, E. Rangasamy, J. Li, Y. Chen, K. An, N. Dudney, and C. Liang, J. Mater. Chem. A, 2014, 2(27), 10396-10403.
  41. K. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, and M. Tatsumisago, Inorg. Chem., 2018, 57(16), 9925-9930.
  42. R. Matsuda, T. Kokubo, N. H. H. Phuc, H. Muto, and A. Matsuda, Solid State Ionics, 2020, 345, 115190.
  43. F. Zhao, J. Liang, C. Yu, Q. Sun, X. Li, K. Adair, C. Wang, Y. Zhao, S. Zhang, W. Li, (…), and X. Sun, Adv. Energy Mater., 2020, 10(9), 1903422.
  44. D. Lee, K.-H. Park, S. Y. Kim, J. Y. Jung, W. Lee, K. Kim, G. Jeong, J.-S. Yu, J. Choi, M.-S. Park, and W. Cho, J. Mater. Chem. A, 2021, 9(32), 17311-17316.
  45. K. Homma, M. Yonemura, T. Kobayashi, M. Nagao, M. Hirayama, and R. Kanno, Solid State Ion., 2011, 182(1), 53-58.
  46. R. Kanno, T. Hata, Y. Kawamoto, and M. Irie, Solid State Ion., 2000, 130(1-2), 97-104.
  47. R. Kanno and M. Murayama, J. Electrochem. Soc., 2001, 148(7), A742.
  48. M. Murayama, R. Kanno, M. Irie, S. Ito, T. Hata, N. Sonoyama, and Y. Kawamoto, J. Solid State Chem., 2002, 168(1), 140-148.
  49. M. Murayama, N. Sonoyama, A. Yamada, and R. Kanno, Solid State Ion., 2004, 170(3-4), 173-180.
  50. T. Kimura, T. Nakano, A. Sakuda, M. Tatsumisago, and A. Hayashi, J. Ceram. Soc. Jpn., 2023, 131(6), 166-171.
  51. Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, and H. Zhu, Adv. Mater., 2019, 31(44), 1901131.
  52. R. Mercier, J. P. Malugani, B. Fahys, J. Douglande, and G. Robert, J. Solid State Chem., 1982, 43(2), 151-162.
  53. K. Homma, M. Yonemura, M. Nagao, M. Hirayama, and R. Kanno, J. Phys. Soc. Jpn., 2010, 79, 90-93. DOI: 10.1143/JPSJS.79SA.90.
  54. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Adv. Mater., 2005, 17(7), 918-921.
  55. F. Mizuno, T. Ohtomo, A. Hayashi, K. Tadanaga, T. Minami, and M. Tatsumisago, J. Ceram. Soc. Jpn. Suppl., 2004, 112, S709-S712.
  56. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, Solid State Ion., 2006, 177(26-32), 2721-2725.
  57. H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, and M. Tatsumisago, Solid State Ion., 2007, 178(15-18), 1163-1167.
  58. A. Hayashi, K. Minami, and M. Tatsumisago, J. Solid State Electrochem., 2010, 14, 1761-1767.
  59. M. Tatsumisago, M. Nagao, and A. Hayashi, J. Asian Ceram. Soc., 2018, 1(1), 17-25.
  60. S. Chen, D. Xie, G. Liu, J. P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, and X. Yao, Energy Storage Mater., 2018, 14, 58-74.
  61. C. Dietrich, D. A. Weber, S. J. Sedlmaier, S. Indris, S. P. Culver, D. Walter, J. Janek, and W. G. Zeier, J. Mater. Chem. A, 2017, 5(34), 18111-18119.
  62. P. Bron, S. Dehnen, and B. Roling, J. Power Sources, 2016, 329, 530-535.
  63. P. Bron, S. Johansson, K. Zick, J. S. auf der Gunne, S. Dehnen, and B. Roling, J. Am. Chem. Soc., 2013, 135(42), 15694-15697.
  64. M. Inagaki, K. Suzuki, S. Hori, K. Yoshino, N. Matsui, M. Yonemura, M. Hirayama, and R. Kanno, Chem. Mater., 2019, 31(9), 3485-3490.
  65. J. Liang, N. Chen, X. Li, X. Li, K. R. Adair, J. Li, C. Wang, C. Yu, M. N. Banis, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Huang, and X. Sun, Chem. Mater., 2020, 32(6), 2664-2672.
  66. Q. Wang, D. Liu, X. Ma, Q. Liu, X. Zhou, and Z. Lei, J. Colloid Interface Sci., 2022, 627, 1039-1046.
  67. A. Kuhn, O. Gerbig, C. Zhu, F. Falkenberg, J. Maier, and B. V. Lotsch, Phys. Chem. Chem. Phys., 2014, 16(28), 14669-14674.
  68. T. Ito, S. Hori, M. Hirayama, and R. Kanno, J. Mater. Chem. A, 2022, 10(27), 14392-14398.
  69. X. Wu, H. Pan, M. Zhang, H. Zhong, Z. Zhang, W. Li, X. Sun, X. Mu, S. Tang, P. He, and H. Zhou, Adv. Sci., 2024, 11(25), 2308604.
  70. O. Kwon, M. Hirayama, K. Suzuki, Y. Kato, T. Saito, M. Yonemura, T. Kamiyama, and R. Kanno, J. Mater. Chem. A, 2015, 3(1), 438-446.
  71. F. Du, X. Ren, J. Yang, J. Liu, and W. Zhang, J. Phys. Chem. C, 2014, 118(20), 10590-10595.
  72. Y. Mo, S. P. Ong, and G. Ceder, Chem. Mater., 2012, 24(1), 15-17.
  73. S. Hori, S. Taminato, K. Suzuki, M. Hirayama, Y. Kato, and R. Kanno, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2015, 71, 727-736.
  74. Y. Sun, K. Suzuki, S. Hori, M. Hirayama, and R. Kanno, Chem. Mater., 2017, 29(14), 5858-5864.
  75. T. Krauskopf, S. P. Culver, and W. G. Zeier, Chem. Mater., 2018, 30(5), 1791-1798.
  76. R. B. Beeken, J. Garbe, J. Gillis, N. R. Petersen, B. W. Podoll, and M. R. Stoneman, J. Phys. Chem. Solids, 2005, 66(5), 882-886.
  77. P. R. Rayavarapu, N. Sharma, V. K. Peterson, and S. Adams, J. Solid State Electrochem., 2011, 16, 1807-1813.
  78. M. A. Kraft, S. P. Culver, M. Calderon, F. Bocher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, and W. G. Zeier, J. Am. Chem. Soc., 2017, 139(31), 10909-10918.
  79. L. Zhou, A. Assoud, Q. Zhang, X. Wu, and L. F. Nazar, J. Am. Chem. Soc., 2019, 141(48), 19002-19013.
  80. M. A. Kraft, S. Ohno, T. Zinkevich, R. Koerver, S. P. Culver, T. Fuchs, A. Senyshyn, S. Indris, B. J. Morgan, and W. G. Zeier, J. Am. Chem. Soc., 2018, 140(47), 16330-16339.
  81. Y. Lee, J. Jeong, H. J. Lee, M. Kim, D. Han, H. Kim, J. M. Yuk, K.-W. Nam, K. Y. Chung, H.-G. Jung, and S. Yu, ACS Energy Lett., 2021, 7(1), 171-179.
  82. S. J. Sedlmaier, S. Indris, C. Dietrich, M. Yavuz, C. Drager, F. von Seggern, H. Sommer, and J. Janek, Chem. Mater., 2017, 29(4), 1830-1835.
  83. H. Liu, Q. Zhu, C. Wang, G. Wang, Y. Liang, D. Li, L. Gao, and L.-Z. Fan, Adv. Funct. Mater., 2022, 32(32), 2203858.
  84. W. Huang, K. Yoshino, S. Hori, K. Suzuki, M. Yonemura, M. Hirayama, and R. Kanno, J. Solid State Chem., 2019, 270, 487-492.
  85. W. Huang, L. Cheng, S. Hori, K. Suzuki, M. Yonemura, M. Hirayama, and R. Kanno, Mater. Adv., 2020, 1(3), 334-340.
  86. M. Xu, Y. Sun, S. Hori, K. Suzuki, W. Huang, M. Hirayama, and R. Kanno, Solid State Ion., 2020, 356, 115458.
  87. R. D. Shannon, Acta Crystallogr. A, 1976, 32(5), 751-767.
  88. D. H. S. Tan, A. Banerjee, Z. Deng, E. A. Wu, H. Nguyen, J.-M. Doux, X. Wang, J. Cheng, S. P. Ong, Y. S. Meng, and Z. Chen, ACS Appl. Energy Mater., 2019, 2(9), 6542-6550.
  89. P. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen, and F. Wu, Adv. Mater., 2021, 33(32), 2100921.
  90. Y. Ni, C. Huang, H. Liu, Y. Liang, and L.-Z. Fan, Adv. Funct. Mater., 2022, 32(41), 2205998.
  91. Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, and B. Wen, J. Power Sources, 2019, 410-411, 162-170.
  92. A. Fukushima, A. Hayashi, H. Yamamura, and M. Tatsumisago, Solid State Ion., 2017, 304, 85-89.
  93. S. Banerjee, X. Zhang, and L.-W. Wang, Chem. Mater., 2019, 31(18), 7265-7276.
  94. Y. Zhu and Y. Mo, Angew. Chem. Int. Ed., 2020, 59(40), 17472-17476.
  95. S. Nachimuthu, H.-J. Cheng, H.-J. Lai, Y.-H. Cheng, R.-T. Kuo, W. G. Zeier, B. J. Hwang, and J.-C. Jiang, Mater. Today Chem., 2022, 26, 101223.
  96. H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Solid State Ion., 2011, 182(1), 116-119.
  97. M. Tachez, J.-P. Malugani, R. Mercier, and G. Robert, Solid State Ion., 1984, 14(3), 181-185.
  98. T. A. Yersak, Y. Zhang, F. Hao, and M. Cai, Front. Energy Res., 2022, 10, 882508.
  99. Y. Bai, Y. Zhao, W. Li, L. Meng, Y. Bai, and G. Chen, Chem. Eng. J., 2020, 396, 125334.
  100. T. Ohtomo, A. Hayashi, M. Tatsumisago, and K. Kawamoto, Electrochemistry, 2013, 81(6), 428-431.
  101. H. Tsukasaki, H. Morimoto, and S. Mori, Solid State Ion., 2020, 347, 115267.
  102. M. Xuan, W. Xiao, H. Xu, Y. Shen, Z. Li, S. Zhang, Z. Wang, and G. Shao, J. Mater. Chem. A, 2018, 6(39), 19231-19240.
  103. W. Xiao, H. Xu, M. Xuan, Z. Wu, Y. Zhang, X. Zhang, S. Zhang, Y. Shen, and G. Shao, J. Energy Chem., 2021, 53, 147-154.
  104. T. Chen, L. Zhang, Z. Zhang, P. Li, H. Wang, C. Yu, X. Yan, L. Wang, and B. Xu, ACS Appl. Mater. Interfaces, 2019, 11(43), 40808-40816.
  105. C. L. Carnes and K. J. Klabunde, Chem. Mater., 2002, 14(4), 1806-1811.
  106. T. Ohtomo, A. Hayashi, M. Tatsumisago, Y. Tsuchida, S. Hama, and K. Kawamoto, J. Power Sources, 2013, 233, 231-235.
  107. M. K. Tufail, L. Zhou, N. Ahmad, R. Chen, M. Faheem, L. Yang, and W. Yang, Chem. Eng. J., 2021, 407, 127149.
  108. M. K. Tufail, N. Ahmad, L. Zhou, M. Faheem, L. Yang, R. Chen, and W. Yang, Chem. Eng. J., 2021, 425, 130535.
  109. J. Y. Jung, S. A. Han, H. Kim, J. H. Suh, J.-S. Yu, W. Cho, M.-S. Park, and J. H. Kim, ACS Nano, 2023, 17(16), 15931-15941.
  110. K. H. Park, D. Y. Oh, Y. E. Choi, Y. J. Nam, L. Han, J.-Y. Kim, H. Xin, F. Lin, S. M. Oh, and Y. S. Jung, Adv. Mater., 2016, 28(9), 1874-1883.
  111. T. Kimura, A. Kato, C. Hotehama, A. Sakuda, A. Hayashi, and M. Tatsumisago, Solid State Ion., 2019, 333, 45-49.
  112. Z. Liu, W. Fu, E. A. Payzant, X. Yu, Z. Wu, N. J. Dudney, J. Kiggans, K. Hong, A. J. Rondinone, and C. Liang, J. Am. Chem. Soc., 2013, 135(3), 975-978.
  113. R. G. Pearson, J. Chem. Educ., 1968, 45(9), 581.
  114. L. Yu, Q. Jiao, B. Liang, H. Shan, C. Lin, C. Gao, X. Shen, and S. Dai, J. Alloys Compd., 2022, 913, 165229.
  115. Y. S. Oh, M. Kim, S. Kang, J.-Y. Park, and H.-T. Lim, Chem. Eng. J., 2022, 442, 136229.
  116. Y. He, W. Chen, Y. Zhao, Y. Li, C. Lv, H. Li, J. Yang, Z. Gao, and J. Luo, Energy Storage Mater., 2022, 49, 19-57.
  117. B. Tao, C. Ren, H. Li, B. Liu, X. Jia, X. Dong, S. Zhang, and H. Chang, Adv. Funct. Mater., 2022, 32(34), 2203551.
  118. X. Wang, K. He, S. Li, J. Zhang, and Y. Lu, Nano Res., 2022, 16, 3741-3765.
  119. Z. Yu, S.-L. Shang, K. Ahn, D. T. Marty, R. Feng, M. H. Engelhard, Z.-K. Liu, and D. Lu, ACS Appl. Mater. Interfaces, 2022, 14(28), 32035-32042.
  120. J. W. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2018, 9(3), 176-183.
  121. C. B. Lim and Y. J. Park, J. Electrochem. Sci. Technol., 2020, 11(4), 411-420.
  122. J. Y. Lee and Y. J. Park, J. Electrochem. Sci. Technol., 2022, 13(3), 407-415.
  123. J. Zhang, G. Zhu, H. Li, J. Ju, J. Gu, R. Xu, S. Jin, J. Zhou, and B. Chen, Nano Res., 2022, 16, 3516-3523.