참고문헌
- 나희경.이희우.(2016). 린 스타트업 방법론의 적용: 한국'카닥'사례를 중심으로: 한국 '카닥' 사례를 중심으로. 벤처창업연구, 11(5), 29-43.
- 정화영.양영석.(2007). 창업기업의 비즈니스 모델 타당성 평가방안의 이론적 고찰. 벤처창업연구, 2(2), 1-22.
- Alslaity, A., & Orji, R.(2024). Machine learning techniques for emotion detection and sentiment analysis: current state, challenges, and future directions. Behaviour & Information Technology, 43(1), 139-164.
- Blank, S., & Eckhardt, J. T.(2023). The lean startup as an actionable theory of entrepreneurship. Journal of Management, 1-15.
- Bortolini, R. F., Nogueira Cortimiglia, M., Danilevicz, A. D. M. F., & Ghezzi, A.(2021). Lean Startup: a comprehensive historical review. Management Decision, 59(8), 1765-1783.
- Choi, H. S., & Leon, S.(2020). An empirical investigation of online review helpfulness: A big data perspective. Decision Support Systems, 139, 1-12.
- Cialdini, R. B., & Goldstein, N.(2009). Normative influences on consumption and conservation behaviors. Social Psychology of Consumer Behavior, 273-296.
- Deutsch, M., & Gerard, H. B.(1955). A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology, 51(3), 629-636.
- Frederiksen, D. L., & Brem, A.(2017). How do entrepreneurs think they create value? A scientific reflection of Eric Ries' Lean Startup approach. International Entrepreneurship and Management Journal, 13, 169-189.
- Frederick, S., Loewenstein, G., & O'donoghue, T.(2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351-401.
- Hemalatha, S., & Ramathmika, R.(2019). Sentiment analysis of yelp reviews by machine learning. In 2019 International Conference on Intelligent Computing and Control Systems (ICCS) (pp. 700-704). IEEE.
- Hong, H., Xu, D., Wang, G. A., & Fan, W.(2017). Understanding the determinants of online review helpfulness: A meta-analytic investigation. Decision Support Systems, 102, 1-11.
- Jahoda, M.(1959). Conformity and independence: A psychological analysis. Human Relations, 12(2), 99-120.
- Jemai, F., Hayouni, M., & Baccar, S. (2021, June). Sentiment analysis using machine learning algorithms. In 2021 International Wireless Communications and Mobile Computing (IWCMC) (pp. 775-779). IEEE.
- Latane, B.(1981). The psychology of social impact. American psychologist, 36(4), 343.
- Lopez-Lopez, I., & Parra, J. F.(2016). Is a most helpful eWOM review really helpful? The impact of conflicting aggregate valence and consumer's goals on product attitude. Internet Research, 26(4), 827-844.
- Majumder, M. G., Gupta, S. D., & Paul, J.(2022). Perceived usefulness of online customer reviews: A review mining approach using machine learning & exploratory data analysis. Journal of Business Research, 150, 147-164.
- Mariani, M. M., Borghi, M., & Laker, B.(2023). Do submission devices influence online review ratings differently across different types of platforms? A big data analysis. Technological Forecasting and Social Change, 189, 1-12.
- Nelson, P.(1970). Information and consumer behavior. Journal of Political Economy, 78(2), 311-329.
- Raju, P. S., Lonial, S. C., & Mangold, W. G.(1995). Differential effects of subjective knowledge, objective knowledge, and usage experience on decision making: An exploratory investigation. Journal of Consumer Psychology, 4(2), 153-180.
- Ries, E.(2011). The lean startup: How today's entrepreneurs use continuous innovation to create radically successful businesses. Crown Currency.
- Severin, W.(1967). Another look at cue summation. AV Communication Review, 15(3), 233-245.
- Shepherd, D. A., & Gruber, M.(2021). The lean startup framework: Closing the academic-practitioner divide. Entrepreneurship Theory and Practice, 45(5), 967-998.
- Shukla, A., & Mishra, A.(2023). Role of review length, review valence and review credibility on consumer's online hotel booking intention. FIIB Business Review, 12(4), 403-414.
- Singla, Z., Randhawa, S., & Jain, S.(2017). Sentiment analysis of customer product reviews using machine learning. In 2017 international conference on intelligent computing and control (I2C2) (pp. 1-5). IEEE.
- Stigler, G. J.(1961). The economics of information. Journal of Political Economy, 69(3), 213-225.
- Taherdoost, H., & Madanchian, M.(2023). Artificial intelligence and sentiment analysis: A review in competitive research. Computers, 12(2), 37-52.
- Thakur, R.(2018). Customer engagement and online reviews. Journal of Retailing and Consumer Services, 41, 48-59.
- Tripathy, A., & Rath, S. K.(2017). Classification of sentiment of reviews using supervised machine learning techniques. International Journal of Rough Sets and Data Analysis, 4(1), 56-74.
- Veena, G., Vinayak, A., & Nair, A. J.(2021). Sentiment Analysis using Improved Vader and Dependency Parsing. 2021 2nd Global Conference for Advancement in Technology (GCAT). IEEE.
- Wang, F., Du, Z., & Wang, S.(2023). Information multidimensionality in online customer reviews. Journal of Business Research, 159, 1-15.
- Xu, Y., Wu, X., & Wang, Q.(2015). Sentiment analysis of yelp's ratings based on text reviews. 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), 17(1).