DOI QR코드

DOI QR Code

Effects of Low-Intensity Wearable Ultrasound Technology on Pain, Muscle Tone, and Body Temperature in Women: Randomized Control Trials

  • SungYeon Oh (Department of Physical Therapy, Sunmoon University) ;
  • Jaeho Yu (Department of Physical Therapy, Sunmoon University)
  • Received : 2024.05.17
  • Accepted : 2024.06.26
  • Published : 2024.06.30

Abstract

Purpose: This study investigated the effect of low-intensity wearable ultrasound technology on pain, muscle tension, and body temperature compared to normal medical ultrasounds. Methods: A total of 36 women volunteered to be in this study. Participants were randomly distributed into a wearable ultrasound group (WUG) (n=10) and a medical ultrasound group (MUG) (n=10). The intervention was conducted on a one-off basis. We measured pain using KSF-MPQ, VAS, and an algometer; muscle tension was measured using a Myoton PRO; body temperature was analyzed using an IRIS-XP. All measurements were evaluated using a paired t-test and an independent t-test. Results: In this study, low-intensity wearable ultrasound positively affected pain, muscle tone, and body temperature. In the independent t-test, there was a significant difference in muscle tension in both groups (p<0.05); in the case of stiffness, there was a significant difference in the WUG (p<0.05). For elasticity, there was no significant difference in the MUG (p>0.05), although there was a significant difference in the WUG (p<0.05). In the stress recovery time, elasticity, relaxation, and creep there were no significant differences in the MUG (p>0.05). For body temperature, and in the KSF-MPQ, VAS, and algometer assessments, there were significant differences noted in both groups (p<0.01). Conclusion: First, wearable therapeutic devices using low-intensity ultrasound significantly affected pain, tenderness, muscle tension, and body temperature. Second, wearable therapeutic devices using low-intensity ultrasound can be as effective as traditional medical ultrasound devices.

Keywords

References

  1. Kang TW, Kim BR. Cervical and scapula-focused resistance exercise program versus trapezius massage in patients with chronic neck pain: a randomized controlled trial. Medicine. 2022;101(39):e30887.
  2. Cote P, Cassidy JD, Carroll LJ et al. The annual incidence and course of neck pain in the general population: a population-based cohort study. Pain. 2004;112(3):267-73.
  3. Guez M, Hildingsson C, Nilsson M et al. The prevalence of neck pain. Acta Orthop Scand. 2002;73(4):455-9.
  4. Hoy DG, Protani M, De R et al. The epidemiology of neck pain. Best Pract Res Clin Rheumatol. 2010;24(6):783-92.
  5. Holmberg SA, Thelin AG. Primary care consultation, hospital admission, sick leave and disability pension owing to neck and low back pain: a 12-year prospective cohort study in a rural population. BMC Musculoskelet Disord. 2006;7(1):1-8.
  6. Shin S, Yang EH, Lee HC et al. The relationship between visual display terminal usage at work and symptoms related to computer vision syndrome. Ann Occup Environ Med. 2023;35:e1.
  7. Jeong S, Lee SY, Eu SM et al. Study on the environmental factors and symptoms of VDT syndrome. J Korean Oph Opt Soc. 2009;14(4):65-9.
  8. Shafeeq S, Noreen A, Nasrullah Z et al. Association of upper crossed syndrome with neck pain in lactating women. Pak J Med Health Sci. 2023;17(05):192.
  9. Wood RW, Loomis AL. XXXVIII. The physical and biological effects of high-frequency sound-waves of great intensity. The London, Edinburgh Philos Mag & J Sci. 1927;4(22):417-36.
  10. Hensel K, Mienkina MP, Schmitz G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med Biol. 2011;37(12):2105-15.
  11. Sung JH, Lee JM, Kim JH. The effectiveness of ultrasound deep heat therapy for adhesive capsulitis: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19(3):1859.
  12. Cardenas-Sandoval RP, Pastrana-Rendon HF, Avila A et al. Effect of therapeutic ultrasound on the mechanical and biological properties of fibroblasts. Regen Eng Transl Med. 2023;9(2):263-78.
  13. Draper DO, Klyve D, Ortiz R et al. Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: a randomized, placebo-controlled double-blind study. J Orthop Surg Res. 2018;13:1-9.
  14. Zhong C, Guo N, Hu C et al. Efficacy of wearable low-intensity pulsed ultrasound treatment in the movement disorder in Parkinson's disease (the SWUMP trial): protocol for a single-site, double-blind, randomized controlled trial. Trials. 2024;25(1):275.
  15. Lewis Jr GK, Langer MD, Henderson Jr CR et al. Design and evaluation of a wearable self-applied therapeutic ultrasound device for chronic myofascial pain. Ultrasound Med Biol. 2013;39(8):1429-39.
  16. Windt DAWM, Heijden GJMG, Berg SVD et al. Ultrasound therapy for musculoskeletal disorders: a systematic review. Pain. 1999;81(3):257-71.
  17. Smallcomb M, Khandare S, Vidt ME et al. Therapeutic ultrasound and shockwave therapy for tendinopathy: a narrative review. Am J Phys Med Rehabil. 2022;101(8):801-7.
  18. Tokar DM, Kaut KP, Allen PA. Revisiting the factor structure of the Short-Form McGill Pain Questionnaire-2 (SF-MPQ-2): evidence for a bifactor model in individuals with Chiari malformation. PLoS One. 2023;18(10):e0287208.
  19. Hawker GA, Mian S, Kendzerska T et al. Measures of adult pain: Visual analog scale for pain (VAS pain), numeric rating scale for pain (NRS pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011;63(S11):S240-52.
  20. Astrom M, Thet Lwin ZM, Teni FS et al. Use of the visual analogue scale for health state valuation: a scoping review. Qual Life Res. 2023;32(10):2719-29.
  21. Kim JW, Lee MY. Validity evidences of VAS pain scale utilizing objective physical activity measures in middle-aged females with low-back pain. The Korean J Meas Eval Phys Educ Sports Sci. 2013;15(2):29-39.
  22. Draper DO, Klyve D, Ortiz R et al. Effect of low-intensity long-duration ultrasound on the symptomatic relief of knee osteoarthritis: a randomized, placebo-controlled double-blind study. J Orthop Surg Res. 2018;13(1):1-9.
  23. Lin G, Reed-Maldonado AB, Lin M et al. Effects and mechanisms of low-intensity pulsed ultrasound for chronic prostatitis and chronic pelvic pain syndrome. Int J Mol Sci. 2016;17(7):1057.
  24. Fernandez-de-Las-Penas C, Dommerholt J. International consensus on diagnostic criteria and clinical considerations of myofascial trigger points: a Delphi study. Pain Med. 2018;19(1):142-50.
  25. Kim Y, Kim K. Abdominal examination using pressure pain threshold algometer reflecting clinical characteristics of complementary and alternative medicine in Korea: a systematic review and a brief proposal. Medicine. 2022;101(46):e31417.
  26. Kavadar G, Caglar N, Ozen S et al. Efficacy of conventional ultrasound therapy on myofascial pain syndrome: a placebo controlled study. Agri. 2015;27(4):190-6.
  27. Ansari S, Charantimath S, Lagali-Jirge V et al. Comparative efficacy of low-level laser therapy (LLLT) to TENS and therapeutic ultrasound in management of TMDs: a systematic review & meta-analysis. CRANIO. 2022;1-10.
  28. Ay S, Dogan SK, Evcik D, Baser OC. Comparison the efficacy of phonophoresis and ultrasound therapy in myofascial pain syndrome. Rheumatol Int. 2011;31(9):1203-8.
  29. Gurfinkel V, Cacciatore TW, Cordo P et al. Postural muscle tone in the body axis of healthy humans. J Neurophysiol. 2006;96(5):2678-87.
  30. Bruggemann N. Contemporary functional neuroanatomy and pathophysiology of dystonia. J Neural Transm. 2021;128(4):499-508.
  31. Panihar U, Joshi S. Systematic review and meta-analysis on efficacy of various exercise programs to improve postural parameters, pain and disability in neck. Comp Exerc Physiol. 2023;19(2):101-10.
  32. Sahin N, Ugurlu H, Karahan AY. Efficacy of therapeutic ultrasound in the treatment of spasticity: a randomized controlled study. NeuroRehabilitation. 2011;29(1):61-6.
  33. Draper DO, Mahaffey C, Kaiser D et al. Thermal ultrasound decreases tissue stiffness of trigger points in upper trapezius muscles. Physiother Theory Pract. 2010;26(3):167-72.
  34. Arifin S. Effectiveness of ultrasound and stretching on ability to raise hands in right shoulder stiffness. In: Proceedings. MDPI. 2022;83(1):18.
  35. Girasol CE, Dibai-Filho AV, de Oliveira AK et al. Correlation between skin temperature over myofascial trigger points in the upper trapezius muscle and range of motion, electromyographic activity, and pain in chronic neck pain patients. J Manipulative Physiol Ther. 2018;41(4):350-7.
  36. Kim JM, Chong SY. Therapeutic evaluation of myofascial trigger points by digital infrared thermographic imaging. J Korean Acad Rehabil Med. 1997;21(3):500-10.
  37. Dibai-Filho AV, de Jesus Guirro RR. Evaluation of myofascial trigger points using infrared thermography: a critical review of the literature. J Manipulative Physiol Ther. 2015;38(1):86-92.
  38. Kanai S, Taniguchi N, Okano H. Effect of magnetotherapeutic device on pain associated with neck and shoulder stiffness. Altern Ther Health Med. 2011;17(6):44-8.
  39. Chan AK, Myrer JW, Measom GJ et al. Temperature changes in human patellar tendon in response to therapeutic ultrasound. J Athl Train. 1998;33(2):130-5.
  40. Draper DO, Sunderland S, Kirkendall DT et al. A comparison of temperature rise in human calf muscles following applications of underwater and topical gel ultrasound. J Orthop Sports Phys Ther. 1993;17(5):247-51.