Acknowledgement
The work presented in this paper was funded by the National Natural Science Foundation of China (Grant No. 52378381), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. SJCX24_1462), the Graduate Innovation Program of China University of Mining and Technology (Grant No. 2024WLJCRCZL065) and China University of Mining and Technology (CUMT) Open Sharing Fund for Large-scale Instruments and Equipment (Grant No. DYGX-2024-43).
References
- An, J.H., Tao, L.J., Jiang, L.Z. and Yan, H.J. (2021), "A shaking table-based experimental study of seismic response of shielden-large-dig type's underground subway station in liquefiable ground", Soil Dyn. Earthq. Eng., 147, 106621. https://doi.org/10.1016/j.soildyn.2021.106621.
- Azadi, M. and Hosseini, S.M.M.M. (2010), "Analyses of the effect of seismic behavior of shallow tunnels in liquefiable grounds", Tunn. Undergr. Sp. Tech., 25(5), 543-552. https://doi.org/10.1016/j.tust.2010.03.003.
- Bobet, A., Fernandez, G., Huo, H.B. and Ramirez, J. (2008), "A practical iterative procedure to estimate seismic-induced deformations of shallow rectangular structures", Can. Geotech. J., 45(7), 923-938. https://doi.org/10.1139/t08-026.
- Chen, G., Chen, S., Qi, C., Du, X., Wang, Z. and Chen, W. (2014), "Shaking table tests on a three-arch type subway station structure in a liquefiable soil", Bull. Earthq. Eng., 13(6), 1675-1701. https://doi.org/10.1007/s10518-014-9675-0.
- Cheng, X.L. and Sun, Z.G. (2018), "Effects of Burial Depth on the Seismic Response of Subway Station Structure Embedded in Saturated Soft Soil", Adv. Civil Eng., 1-12. https://doi.org/10.1155/2018/8978467.
- Chou, J.C. and Lin, E.G.E. (2020), "Incorporating ground motion effects into Sasaki and Tamura prediction equations of liquefaction-induced uplift of underground structures", Geomech. Eng., 22(1), 25-33. https://doi.org/10.12989/gae.2020.22.1.025.
- Cui, Z.D., Zhang, L.J. and Hou, C.Y. (2023a), "Seismic behavior of subway station in the soft clay field before and after freeze-thaw cycle", Soil Dyn. Earthq. Eng., 175, 108222. https://doi.org/10.1016/j.soildyn.2023.108222.
- Cui, Z.D., Zhang, L.J. and Zhan, Z.X. (2023b), "Seismic response analysis of shallowly buried subway station in inhomogeneous clay site", Soil Dyn. Earthq. Eng., 171, 107986. https://doi.org/10.1016/j.soildyn.2023.107986.
- Ding, X., Zhang, Y., Wu, Q., Chen, Z. and Wang, C. (2021), "Shaking table tests on the seismic responses of underground structures in coral sand", Tunn. Undergr. Sp. Tech., 109, 103775. https://doi.org/10.1016/j.tust.2020.103775.
- Dong, R., Jing, L., Li, Y., Yin, Z., Wang, G. and Xu, K. (2020), "Seismic deformation mode transformation of rectangular underground structure caused by component failure", Tunn. Undergr. Sp. Tech., 98, 103298. https://doi.org/10.1016/j.tust.2020.103298.
- Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A., Kontoni, D.P.N. and Shokri-Amiri, M. (2021), "Numerical FEM assessment of soil-pile system in liquefiable soil under earthquake loading including soil-pile interaction", Geomech. Eng., 27(5), 465-479. https://doi.org/10.12989/gae.2021.27.5.465.
- Hamada, M., Towhata, I., Yasuda, S. and Isoyama, R. (1987), "Study on permanent ground displacement induced by seismic liquefaction", Comput. Geotech., 4(4), 197-220. https://doi.org/10.1016/0266-352X(87)90001-2.
- Hashash, Y.M.A., Hook, J.J., Schmidt, B. and Yao, J.I.C. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
- Huo, H., Bobet, A., Fernandez, G. and Ramirez, J. (2005), "Load transfer mechanisms between underground structure and surrounding ground:: Evaluation of the failure of the Daikai Station", J. Geotech. Geoenviron. Eng., 131(12), 1522-1533. https://doi.org/10.1061/(Asce)1090-0241(2005)131:12(1522).
- Iida, H., Hiroto, T., Yoshida, N. and Iwafuji, M. (1996), "Damage to Daikai Subway Station", Soils Found., 36, 283-300. https://doi.org/10.3208/sandf.36.Special_283.
- Jaber, L., Mezeh, R., Zein, Z., Azab, M. and Sadek, M. (2023), "Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system", Geomech. Eng., 34(4), 437-447. https://doi.org/10.12989/gae.2023.34.4.437.
- Kang, G.C., Tobita, T. and Iai, S. (2014), "Seismic simulation of liquefaction-induced uplift behavior of a hollow cylinder structure buried in shallow ground", Soil Dyn. Earthq. Eng., 64, 85-94. https://doi.org/10.1016/j.soildyn.2014.05.006.
- Koseki, J., Matsuo, O., Sasaki, T., Saito, K. and Yamashita, M. (2000), "Damage to sewer pipes during the 1993 Kushiro-Oki and the 1994 Hokkaido-Toho-Oki earthquakes", Soils Found., 40(1), 99-111. https://doi.org/10.3208/sandf.40.99.
- Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Div., 99(5), 421-427. https://doi.org/10.1061/JSFEAQ.0001885.
- Kwon, S.Y., Yoo, M. and Hong, S. (2020), "Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation", Geomech. Eng., 21(2), 143-152. https://doi.org/10.12989/gae.2020.21.2.143.
- Lu, C.C. and Hwang, J.H. (2019), "Nonlinear collapse simulation of Daikai Subway in the 1995 Kobe earthquake: Necessity of dynamic analysis for a shallow tunnel", Tunn. Undergr. Sp. Tech., 87, 78-90. https://doi.org/10.1016/j.tust.2019.02.007.
- Sudevan, P.B., Boominathan, A. and Banerjee, S. (2020), "Mitigation of liquefaction-induced uplift of underground structures by soil replacement methods", Geomech. Eng., 23(4), 365-379. https://doi.org/10.12989/gae.2020.23.4.365.
- Sun, Q., Dias, D., Guo, X. and Li, P. (2019), "Numerical study on the effect of a subway station on the surface ground motion", Comput. Geotech., 111, 243-254. https://doi.org/10.1016/j.compgeo.2019.03.026.
- Suzuki, T., Adachi, Y. and Tanaka, M. (2006), "Application of microtremor measurements to the estimation of earthquake ground motions in Kushiro city during the Kushiro-Oki earthquake of 15 january 1993", Earthq. Eng. Struct. D., 24(4), 595-613. https://doi.org/10.1002/eqe.4290240409.
- Tokimatsu, K. and Asaka, Y. (1998), "Effects of liquefactioninduced ground displacements on pile performance in the 1995 Hyogoken-Nambu earthquake", Soils Found., 38, 163-177. https://doi.org/10.3208/sandf.38.Special_163.
- Tsinidis, G. (2017), "Response characteristics of rectangular tunnels in soft soil subjected to transversal ground shaking", Tunn. Undergr. Sp. Tech., 62, 1-22. https://doi.org/10.1016/j.tust.2016.11.003.
- Unutmaz, B. (2014), "3D liquefaction assessment of soils surrounding circular tunnels", Tunn. Undergr. Sp. Tech., 40, 85-94. https://doi.org/10.1016/j.tust.2013.09.006.
- Wang, J.N., Ma, G.W., Zhuang, H.Y., Dou, Y.M. and Fu, J.S. (2019), "Influence of diaphragm wall on seismic responses of large unequal-span subway station in liquefiable soils", Tunn. Undergr. Sp. Tech., 91, 102988. https://doi.org/10.1016/j.tust.2019.05.018.
- Wu, Q., Ding, X., Zhang, Y., Chen, Z. and Zhang, Y. (2021), "Numerical simulations on seismic response of soil-pilesuperstructure in coral sand", Ocean Eng., 239, 109808. https://doi.org/10.1016/j.oceaneng.2021.109808.
- Xu, M.Z., Cui, Z.D. and Yuan, L. (2024), "Effect of relative stiffness on seismic response of subway station buried in layered soft soil foundation", Geomech. Eng., 36(2), 167-181. https://doi.org/10.12989/gae.2024.36.2.167.
- Yoo, M., Kwon, S.Y. and Hong, S. (2022), "Dynamic response evaluation of deep underground structures based on numerical simulation", Geomech. Eng., 29(3), 269-279. https://doi.org/10.12989/gae.2022.29.3.269.
- Zhuang, H., Chen, G., Hu, Z. and Qi, C. (2015b), "Influence of soil liquefaction on the seismic response of a subway station in model tests", Bull. Eng. Geol. Environ., 75(3), 1169-1182. https://doi.org/10.1007/s10064-015-0777-y.
- Zhuang, H.Y., Hu, Z.H., Wang, X.J. and Chen, G.X. (2015a), "Seismic responses of a large underground structure in liquefied soils by FEM numerical modelling", Bull. Earthq. Eng., 13(12), 3645-3668. https://doi.org/10.1007/s10518-015-9790-6.