DOI QR코드

DOI QR Code

Numerical simulation and experimental analysis of granite residual soil-concrete interface under cyclic shear

  • Feiyu Liu (School of Mechanics and Engineering Sciences, Shanghai University) ;
  • Kechao Ma (School of Mechanics and Engineering Sciences, Shanghai University) ;
  • Wei Yu (Zhejiang Huadong Geotechnical Investigation and Design Institute Co., Ltd.)
  • Received : 2024.07.02
  • Accepted : 2024.10.22
  • Published : 2024.11.10

Abstract

Pile foundations are frequently subjected to dynamic loads, necessitating a thorough investigation of cyclic shear characteristics at pile-soil interfaces. To investigate the influence of soil moisture content and concrete surface roughness on the cyclic shear characteristics of interfaces, a series of cyclic shear tests were conducted using a large-scale indoor direct shear apparatus. The effects of three normal stresses (100, 200, and 300 kPa), four moisture content levels (14%, 19%, 24%, and 29%), and five concrete surface joint roughness coefficients (0.4, 5.8, 9.5, 12.8, and 16.7) on interface shear stress and volumetric strain behavior of residual soil were analyzed. Numerical simulations were employed to analyze the microstructural changes in particles. The results show that the water content has a significant effect on the interface stress-displacement curve. It shows a cyclic hardening type at low water content and a cyclic softening type at high water content. There is a critical roughness on the concrete surface. After exceeding this value, the shear strength of the interface is no longer improved. The number of force chains in the soil increases with the increase of the number of cycles and roughness. The increase of the number of particles in the force chain leads to the increase of the instability of the force chain structure. Therefore, most of the force chains are composed of three particles. The main direction of the normal and tangential contact force anisotropy is closely related to the shear direction. The main direction will deflect with the shear direction, and the deflection angle is about 35°.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (Grant No.s 52378355 and 52078285). We gratefully acknowledge the financial support.

References

  1. Barton, N.R. and Choubey, V. (1977), "The shear strength of rock joints in theory and practice", Rock Mech., 10, 1-53. https://doi.org/10.1007/BF01261801.
  2. Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601.
  3. Chen, X.B., Zhang, J.S., Xiao, Y.J. and Li, J. (2015), "Effect of roughness on shear behavior of red clay - concrete interface in large-scale direct shear tests", Can. Geotech. J., 52(8), 1122-1135. https://doi.org/10.1139/cgj-2014-0399.
  4. Chen, C., Yang, Q., Leng, W.M., Dong, J.L., Xu, F., Wei, L.M. and Ruan, B. (2022), "Experimental investigation of the mechanical properties of the sand-concrete pile interface considering roughness and relative density", Materials, 15(13), 4480. https://doi.org/10.3390/ma15134480.
  5. Chen, W.B., Zhou, W.H. and Yin, Z.Y. (2023), "Recent development on macro-micro mechanism of soil-structure interface shearing through DEM", Arch. Comput. Method. Eng., 30(3), 1843-1862. https://doi.org/10.1007/s11831-022-09854-0.
  6. Dou, H.Q., Xie, S.H., Chen, F., Wang, H., Chen, F.Q. and Jian, W.B. (2023), "Study on shear characteristics and a mechanics model of granite residual soil-rock interface", Bull. Eng. Geol. Environ., 82(6), 212. https://doi.org/10.1007/s10064-023-03220-5.
  7. Fang, H.L. and Wang, W.J. (2020), "A three-dimensional multishear bounding surface model of granular soil-structure interfaces under monotonic and cyclic loading", J. Eng. Mech., 146(7), 04020068. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001796.
  8. Feng, D.K., Hou, W.J. and Zhang, J.M. (2011), "Test investigations on 3D stress-controlled cyclic behavior of gravel-structure interface", Chinese J. Rock Mech. Eng., 30(12), 2574-2582. http://doi.org/CNKI:SUN:YSLX.0.2011-12-024.
  9. Feng, D.K. and Zhang, J.M. (2022), "Influences of shear stress amplitude on tangential deformation behavior of a gravel-structure interface", Chinese J. Geotech. Eng., 44(11), 1959-1967. http://dx.doi.org/10.11779/CJGE202211001.
  10. Fu, L.L., Zhou, S.H., Guo, P.J., Wang, S. and Luo, Z. (2019), "Induced force chain anisotropy of cohesionless granular materials during biaxial compression", Granular Matter., 21(3), 52. https://doi.org/10.1007/s10035-019-0899-1.
  11. Huang, M.S., Chen, Y.W. and Gu, X.Q. (2019), "Discrete element modeling of soil-structure interface behavior under cyclic loading", Comput. Geotech., 107, 14-24. https://doi.org/10.1016/j.compgeo.2018.11.022.
  12. Li, L.C., Zheng, M.Y., Liu, X., Wu, W.B., Liu, H., El Naggar, M. H. and Jiang, G.S. (2022a), "Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation", Comput. Geotech., 144, 104635. https://doi.org/10.1016/j.compgeo.2022.104635.
  13. Li, S.J., Tong, Y.G., Wang, J., Ying, M.J. and Liu, F.Y. (2022b), "Cyclic shear properties of gravel-geogrid interface under bidirectional cyclic loading", Rock Soil Mech., 43(2), 291-298. https://link.cnki.net/doi/10.16285/j.rsm.2021.0357.
  14. Li, X., Liu, Y.Y., Qian, G.P., Liu, X.Q., Wang, H. and Yin, G.Q. (2023), "Numerical investigation into particle crushing effects on the shear behavior of gravel", Geomech. Eng., 35(2), 209-219. https://doi.org/10.12989/gae.2023.35.2.209.
  15. Liu, S.A., Liao, C.C., Chen, J.J., Ye, G.L. and Xia, X.H. (2021a), "Strength properties of saturated sand-structure interface by triaxial test method", J. Shanghai Jiaotong Univ., 55(11), 1371-1379. https://link.cnki.net/doi/10.16183/j.cnki.jsjtu.2020.299.
  16. Liu, F.Y., Ying, M.J., Yuan, G.H., Wang, J., Gao, Z.Y. and Ni, J.F. (2021b), "Particle shape effects on the cyclic shear behaviour of the soil-geogrid interface", Geotext. Geomembranes, 49(4), 991-1003. https://doi.org/10.1016/j.geotexmem.2021.01.008.
  17. Liu, F.Y., Zhu, C. and Wang, J. (2021c), "Influences of shear rate and loading frequency on shear behavior of geogrid-soil interfaces", Chinese J. Geotech. Eng., 43(5), 832-840. http://dx.doi.org/10.11779/CJGE202105006.
  18. Liu, F.Y., Fu, J., Lu, Y. and Ying, M.J. (2023a), "Macro and micro analyses of static and dynamic shear characteristics of geogrid and rubber-sand mixture interface", Transport. Geotech., 43, 101119. https://doi.org/10.1016/j.trgeo.2023.101119.
  19. Liu, G.Q., Huang, T., Lyu, L., Liu, Z.J. and Ma, C.Z. (2023b), "Effective load transfer capacity analysis for asphalt mixture skeleton based on main force chain characteristics and discrete element method", J. Mater. Civil Eng., 35(9), 04023303. https://doi.org/10.1061/JMCEE7.MTENG-15997.
  20. Ma, Y.M., Guo, J.K., Wang, R., Zhang, Q.Y., Zhang, Q.X., Li, J. and Zuo, S. (2023), "Study on cyclic shear properties of siliceous sand-steel interface under different normal loading conditions", Buildings, 13(9), 2241. https://doi.org/10.3390/buildings13092241.
  21. Maghsoodi, S., Cuisinier, O. and Masrouri, F. (2020), "Effect of temperature on the cyclic behavior of clay-structure interface", J. Geotech. Geoenviron. Eng., 146(10), 04020103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002360.
  22. Mamen, B. and Hammoud, F. (2021), "Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements", Geomech. Eng., 25(4), 275-282. https://doi.org/10.12989/gae.2021.25.4.275.
  23. Mirzaalimohammadi, A., Ghazavi, M., Roustaei, M. and Lajevardi, S.H. (2019), "Pullout response of strengthened geosynthetic interacting with fine sand", Geotext. Geomembranes, 47(4), 530-541. https://doi.org/10.1016/j.geotexmem.2019.02.006.
  24. Pei, T. and Qiu, T. (2022), "DEM investigation of energy dissipation at particle contacts in granular soil under cyclic torsional shear", Int. J. Geomech., 22(4), 04022016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002304.
  25. Peters, J.F., Muthuswamy, M., Wibowo, J. and Tordesillas, A. (2005), "Characterization of force chains in granular material", Phys. Review E, 72(4), 041307. https://doi.org/10.1103/PhysRevE.72.041307.
  26. Qi, T., Zhao, C., Liu, F.Y. and He, J.H. (2023), "Study on cyclic shearing characteristics of sulfated soil-concrete interface", Chinese J. Rock Mech. Eng., 42(2), 4280-4288. https://link.cnki.net/doi/10.13722/j.cnki.jrme.2022.1055.
  27. Wang, X., Cheng, H., Yan, P., Zhang, J.S. and Ding, Y. (2021), "The influence of roughness on cyclic and post-cyclic shear behavior of red clay-concrete interface subjected to up to 1000 cycles", Constr. Build. Mater., 273, 121718. https://doi.org/10.1016/j.conbuildmat.2020.121718.
  28. Yang, J.C., Xia, Y.Y., Chen, W.D., Zhang, L. and Li, L.H. (2023), "Shear behavior of silty clay-concrete interface based on large-scale direct shear test", Int. J.of Geomech., 23(7), 04023084. https://doi.org/10.1061/IJGNAI.GMENG-828.
  29. Ying, M.J., Wang, J., Liu, F.Y., Li, J.T. and Chen, S.Q. (2022), "Analysis of cyclic shear characteristics of reinforced soil interfaces under cyclic loading and unloading", Geotext. Geomembranes, 50(1), 99-115. https://doi.org/10.1016/j.geotexmem.2021.09.004.
  30. Zhang, S.X., Liu, F.Y., Zeng, W.X. and Ying, M.J. (2024), "Analyzing cyclic shear behavior at the sand-rough concrete interface: An experimental and DEM study across varying displacement amplitudes", Int. J. Numer. Anal. Method. Geomech., 48(7), 1907-1928. https://doi.org/10.1002/nag.3713.
  31. Zhou, W.H., Jing, X.Y., Yin, Z.Y. and Geng, X.Y. (2019), "Effects of particle sphericity and initial fabric on the shearing behavior of soil-rough structural interface", Acta Geotechnica, 14(6), 1699-1716. https://doi.org/10.1007/s11440-019-00781-2.