References
- Akavci, S.S. (2014), "An efficient shear deformation theory for free vibration of functionally graded thick rectangular plates on elastic foundation", Compos. Struct., 108, 667-676. https://doi.org/10.1016/j.compstruct.2013.10.019.
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. B Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Alavi, S.K., Ayatollahi, M.R., Petru, M. and Koloor, S.S.R. (2022), "On the dynamic response of viscoelastic functionally graded porous plates under various hybrid loadings", Ocean Eng., 264, 112541. https://doi.org/10.1016/j.oceaneng.2022.112541.
- Alnujaie, A., Akbas, S.D., Eltaher, M.A. and Assie, A. (2021), "Forced vibration of a functionally graded porous beam resting on viscoelastic foundation", Geomech. Eng., 24(1), 91-103. https://doi.org/10.12989/gae.2021.24.1.091.
- Arefi, M. and Meskini, M. (2019), "Application of hyperbolic shear deformation theory to free vibration analysis of functionally graded porous plate with piezoelectric face-sheets", Struct. Eng. Mech., 71(5), 459-467 https://doi.org/10.12989/sem.2019.71.5.459.
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
- Bardell, N.S. (1991), "Free vibration analysis of a flat plate using the hierarchical finite element method", J. Sound Vib., 151, 263-289. https://doi.org/10.1016/0022-460X(91)90855-E.
- Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009.
- Boley, B.A., Weiner J.H. (1960), "Theory of thermal stresses", New York: John Wiley & Sons, Ltd.
- Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
- Burlayenko, V.N., Altenbach, H. and Sadowski, T. (2015), "An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates", J. Sound Vib., 358, 152-175 https://doi.org/10.1016/j.jsv.2015.08.010.
- Calim, F.F. (2003), "Dynamic analysis of viscoelastic, anisotropic curved spatial rod systems", Ph. D. Dissertation, Cukurova University, Adana, Turkey, 160.
- Calim, F.F. (2016), "Dynamic response of curved Timoshenko beams resting on viscoelastic foundation." Struct. Eng. Mech., 59(4), 761-774. http://dx.doi.org/10.12989/sem.2016.59.4.761
- Calim, F.F. and Cuma, Y.C. (2022), "Vibration analysis of nonuniform hyperboloidal and barrel helices made of functionally graded material", Mech. Based Des. Struct., 50(11), 3781-3795 https://doi.org/10.1080/15397734.2020.1822181.
- Calim, F.F. and Cuma, Y.C. (2023), "Forced vibration analysis of viscoelastic helical rods with varying cross-section and functionally graded material", Mech. Based Des. Struct., 51(7), 3620-3631 https://doi.org/10.1080/15397734.2021.1931307.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471.
- Cho, K.N., Bert, C.W. and Striz, A.G. (1991), "Free vibrations of laminated rectangular plates analyzed by higher order individual-layer theory", J. Sound Vib., 145, 429-442 https://doi.org/10.1016/0022-460X(91)90112-W.
- Choe, K., Tang, J., Shui, C., Wang, A. and Wang, Q. (2018), "Free vibration analysis of coupled functionally graded (FG) doublycurved revolution shell structures with general boundary conditions", Compos. Struct., 194, 413-432 https://doi.org/10.1016/j.compstruct.2018.04.035.
- Cuma, Y.C. and Calim, F.F. (2021a). Free vibration analysis of functionally graded cylindrical helices with variable crosssection." J. Sound Vib., 494, 115856. https://doi.org/10.1016/j.jsv.2020.115856
- Cuma, Y.C. and Calim, F.F. (2021b), "Transient response of functionally graded non-uniform cylindrical helical rods", Steel Compos. Struct., 40(4), 571-580 https://doi.org/10.12989/scs.2021.40.4.571.
- Cuma, Y.C. and Calim, F.F. (2022), "Dynamic response of viscoelastic functionally graded barrel and hyperboloidal coil springs with variable cross-sectional area", Mech. Time Depend. Mater., 26, 923-937. https://doi.org/10.1007/s11043-021-09520-1.
- Cuma, Y.C., Ozbey, M.B. and Calim, F.F. (2023), "Vibration and damping analysis of functionally graded shells", Mech. Time Depend. Mater., https://doi.org/10.1007/s11043-023-09621-z.
- Dogan, A. (2022), "Quasi-static and dynamic response of functionally graded viscoelastic plates", Compos. Struct., 280, 114883. https://doi.org/10.1016/j.compstruct.2021.114883.
- Eratli, N., Argeso, H., Calim, F.F., Temel, B., Omurtag, M.H. (2014), "Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM", J. Sound Vib., 333, 3671-3690. https://doi.org/10.1016/j.jsv.2014.03.017.
- Hajlaoui, A., Triki, E., Frikha, A., Wali, M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", LAJSS, 14, 72-91 https://doi.org/10.1590/1679-78253323.
- Kumar, S., Ranjan, V. and Jana, P. (2018), "Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method", Compos. Struct., 197, 39-53. https://doi.org/10.1016/j.compstruct.2018.04.085.
- Leissa, A.W. (1973), "The free vibration of rectangular plates", J. Sound Vib., 31, 257-293. https://doi.org/10.1016/S0022-460X(73)80371-2.
- Mantari, J.L., Granados, E.V., Hinostroza, M.A. and Soares, C.G. (2014), "Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT", Compos. Struct., 118, 455-471. https://doi.org/10.1016/j.compstruct.2014.07.039.
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
- Messina, A. (2011), "Influence of the edge-boundary conditions on three-dimensional free vibrations of isotropic and cross-ply multilayered rectangular plates", Compos. Struct., 93, 2135-2151. https://doi.org/10.1016/j.compstruct.2010.11.010.
- Nagino, H., Mikami, T. and Mizusawa, T. (2008), "Threedimensional free vibration analysis of isotropic rectangular plates using the B-spline Ritz method", J. Sound Vib., 317, 329-353. https://doi.org/10.1016/j.jsv.2008.03.021.
- Nebab, M., Benguediab, S., Atmane, H.A. and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://doi.org/10.12989/gae.2020.22.5.415.
- Nedri, K., Meiche, N.E. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49, 629-640, https://doi.org/10.1007/s11029-013-9379-6.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M. and Jorge, R.M.N. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. B Eng., 43, 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.
- Ozbey, M. B., Cuma, Y. C., Deneme, I.O. and Calim, F. F. (2024), "Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory", Adv. Nano Res., 16(4), 413-426. https://doi.org/10.12989/anr.2024.16.4.413.
- Pandit, M.K., Haldar, S. and Mukhopadhyay, M. (2007), "Free vibration analysis of laminated composite rectangular plate using finite element method", J. Reinf. Plast. Comp., 26, 69-80. https://doi.org/10.1177/0731684407069955.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2), 119-132. https://doi.org/10.12989/gae.2020.22.2.119.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bouiadjra, R.B., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Rad, S.A.F., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. B Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
- Ramu, I. and Mohanty, S.C. (2012), "Study on free vibration analysis of rectangular plate structures using finite element method", Procedia Eng., 38, 2758-2766. https://doi.org/10.1016/j.proeng.2012.06.323.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47, 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.
- Reddy, J.N. (2013), "An introduction to continuum mechanics", Cambridge university press.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Shao, D., Hu, S., Wang, Q. and Pang, F. (2017), "Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions", Compos. B Eng., 108, 75-90. https://doi.org/10.1016/j.compositesb.2016.09.093.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87, https://doi.org/10.1016/j.compstruct.2012.11.018.
- Tabatabaei, S.J.S. and Fattahi, A.M. (2022), "A finite element method for modal analysis of FGM plates", Mech. Based Des. Struct., 50, 1111-1122, https://doi.org/10.1080/15397734.2020.1744004.
- Temel, B. and Sahan, M.F. (2018), "Investigation of the efficiency of the solution of a simple mechanical model by using laplace transformation", AJER, 7(10), 276-282. https://doi.org/10.47000/tjmcs.1378857.
- Temel, B., Calim, F.F. and Tutuncu, N. (2004), "Quasi-static and dynamic response of viscoelastic helical rods", J. Sound Vib., 271, 921-935. https://doi.org/10.1016/S0022-460X(03)00760-0.
- Thai, H.T. and Choi, DH. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. B Eng., 43, 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
- Turker, H.T., Cuma, Y.C. and Calim, F.F. (2023), "An efficient approach for free vibration behaviour of non-uniform and nonhomogeneous helices", IJST-T Civ. Eng., 47(4), 1959-1970. https://doi.org/10.1007/s40996-023-01075-0.
- Van, V.T., Tai, N.H.T. and Hung, N.N. (2021), "Static bending and free vibration analysis of functionally graded porous plates laid on elastic foundation using the meshless method", J. Sci. Tech. Civil Eng., 15, 141-159. https://doi.org/10.31814/stce.nuce2021-15(2)-12.
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272, 703-730, https://doi.org/10.1016/S0022-460X(03)00412-7.
- Vinh, P.V. and Huy, L.Q. (2021), "Influence of variable nonlocal parameter and porosity on the free vibration behavior of functionally graded nanoplates", Shock Vib., 2021(1), 1219429. https://doi.org/10.1155/2021/1219429.
- Vinh, P.V., Chinh, N.V. and Tounsi, A. (2022), "Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM", Eur. J. Mech.-A Solid, 96, 104743. https://doi.org/10.1016/j.euromechsol.2022.104743.
- Xuan, H.N., Tran, L.V., Thai, C.H. and Thoi, T.N. (2012), "Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing", Thin Walled Struct., 54, 1-18. https://doi.org/10.1016/j.tws.2012.01.013.
- Xue, Y., Jin, G., Ma, X., Chen, H., Ye, T. and Chen, M. (2019), "Free vibration analysis of porous plates with porosity distributions in the thickness and in-plane directions using isogeometric approach", Int. J. Mech. Sci., 152, 346-362. https://doi.org/10.1016/j.ijmecsci.2019.01.004.
- Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.
- Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. B Eng., 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001.