과제정보
이 연구는 기상청 국립기상과학원 「기후예측 현업 시스템 개발」(KMA2018-00322)과 「아·태 기후정보서비스 및 연구개발 사업」(KMA2013-07510)의 지원으로 수행되었습니다.
참고문헌
- Athanasiadis, P. J., A. Bellucci, A. A. Scaife, L. Hermanson, S. Materia, A. Sanna, A. Borrelli, C. MacLachlan, and S. Gualdi, 2017: A multisystem view of wintertime NAO seasonal predictions. J. Climate, 30, 1461-1475, doi:10.1175/JCLI-D-16-0153.1.
- Bock, L., A. Lauer, M. Schlund, M. Barreiro, N. Bellouin, C. Jones, G. A. Meehl, V. Predoi, M. J. Roberts, and V. Eyring, 2020: Quantifying progress across different CMIP phases with the ESMValTool. JGR Atmospheres, 125, e2019JD032321, doi:10.1029/2019JD032321.
- Bureau of Meteorology, 2022: Seasonal Prediction ACCESS-S2 Hindcast (1981~2018). NCI Australia., doi:10.25914/60627ad0ba3ee.
- Chang, P.-H., S.-O. Hwang, S.-H. Choo, J. Lee, S.-M. Lee, and K.-O. Boo, 2021: Global ocean data assimilation and prediction system in KMA: Description and assessment. Atmosphere, 31, 229-240, doi:10.14191/Atmos.2021.31.2.229 (in Korean with English abstract).
- Choo, S.-H., P.-H. Chang, S.-O. Hwang, H.-J. Jo, J. Lee, S.-M. Lee, Y.-K. Hyun, and J.-H. Moon, 2021: Assessment of assimilation impact of Argo float observations in marginal seas around Korean Peninsula through observing system experiments. Atmosphere, 31, 283-294, doi:10.14191/Atmos.2021.31.3.283 (in Korean with English abstract).
- Davis, P., R. Comer, D. Fereday, J. Knight, S. Kobayashi, C. MacLachlan, A. Scaife, 2018: An improved approach for land-surface initialization in the Met Office's seasonal forecasting system (GloSea). Int. Conf. Subseasonal to Decadal Prediction, 17-21 Sep., NCAR, Boulder CO, USA, [Available online at https://www.wcrp-climate.org/images/WCRP_conferences/S2S_S2D_2018/pdf/Programme/orals/presentations/A5-03_PhilipDavis.pdf].
- Duan, W., and C. Wei, 2013: The 'spring predictability barrier' for ENSO predictions and its possible mechanism: results from a fully coupled model. Int. J. Climatol., 33, 1280-1292, doi:10.1002/joc.3513.
- Folland, C. K., A. A. Scaife, J. Lindesay, and D. B. Stephenson, 2012: How potentially predictable is northern European winter climate a season ahead? Int. J. Climatol., 32, 801-818, doi:10.1002/joc.2314.
- Graham, R. J., and coauthors, 2000: An assessment of seasonal predictability using atmospheric general circulation models. Quart. J. Roy. Meteor. Soc., 126, 2211-2240, doi:10.1002/qj.49712656712.
- Graham, R. J., M. Gordon, P. J. McLean, S. Ineson, M. R. Huddleston, M. K. Davey, A. Brookshaw, and R. T. H. Barnes, 2005: A performance comparison of coupled uncoupled versions of the Met Office seasonal prediction general circulation model. Tellus A: Dyn. Meteor. Oceanogr., 57, 320-339, doi:10.3402/tellusa.v57i3.14666.
- Ham, H., D. Won, and Y.-S. Lee, 2017: Performance assessment of weekly ensemble prediction data at seasonal forecast system with high resolution. Atmosphere, 27, 261-276, doi:10.14191/Atmos.2017.27.3.261 (in Korean with English abstract).
- Ham, H., S.-M. Lee, Y.-K. Hyun, and Y. Kim, 2019: Performance assessment of monthly ensemble prediction data based on improvement of climate prediction system at KMA. Atmosphere, 29, 149-164, doi:10.14191/Atmos.2019.29.2.149 (in Korean with English abstract).
- Ham, Y.-G., J.-G. Kim, J.-G. Lee, T. Li, M.-I. Lee, S.-W. Son, and Y.-K. Hyun, 2021: The origin of systematic forecast errors of extreme 2020 East Asian summer monsoon rainfall in GloSea5. Geophys. Res. Lett., 48, doi:10.1029/2021GL094179.
- Heo, S.-I., Y.-K. Hyun, Y. Ryu, H.-S. Kang, Y.-J. Lim, and Y. Kim, 2019: An assessment of applicability of heat waves using extreme forecast index in KMA climate prediction system (GloSea5). Atmosphere, 29, 257-267, doi:10.14191/Atmos.2019.29.3.257 (in Korean with English abstract).
- Hodson, D. L., R. T. Sutton, and A. A. Scaife, 2023: Signal-to-noise and predictable modes of variability in winter seasonal forecasts. Quart. J. Roy. Meteor. Soc., 149, 2598-2616, doi:10.1002/qj.4522.
- Hong, D.-C., H.-S. Park, S.-W. Son, J. Kim, J. Lee, and Y.-K. Hyun, 2023: Downward influences of Sudden Stratospheric Warming (SSW) in GloSea6: 2018 SSW case study. Atmosphere, 33, 493-503, doi:10.14191/Atmos.2023.33.5.493 (in Korean with English abstract).
- Hyun, S.-H., S.-O. Hwang, S.-M. Lee, and S.-H. Choo, 2022: Verification of the KMA ocean model NEMO against Argo floats and drift buoys: a comparison with the up-to-date US Navy HYCOM. Atmosphere, 32, 71-84, doi:10.14191/Atmos.2022.32.1.071 (in Korean with English abstract).
- Hyun, Y.-K., J. Park, J. Lee, S. Lim, S.-I. Heo, H. Ham, S.-M. Lee, H.-S. Ji, and Y. Kim, 2020: Reliability assessment of temperature and precipitation seasonal probability in current climate prediction systems. Atmosphere, 30, 141-154, doi:10.14191/Atmos.2020.30.2.141 (in Korean with English abstract).
- Hyun, Y.-K., and Coauthors, 2022: The KMA Global Seasonal forecasting system (GloSea6) - Part 2: Climatological mean bias characteristics. Atmosphere, 32, 87-101, doi:10.14191/Atmos.2022.32.2.087 (in Korean with English abstract).
- Hyun, Y.-K., Y.-H. Park, J. Lee, H.-S. Ji, and K.-O. Boo, 2024: Characteristics of Signal-to-Noise paradox and limits of potential predictive skill in the KMA's Climate Prediction System (GloSea) through ensemble expansion. Atmosphere, 34, 55-67, doi:10.14191/Atmos.2024.34.1.055 (in Korean with English abstract).
- Ineson, S., and M. K. Davey, 1997: Interannaul climate simulation and predictability in a coupled TOGA GCM. Mon. Wea. Rev., 125, 721-741, doi:10.1175/1520-0493(1997)125<0721:ICSAPI>2.0.CO;2.
- Ji, H.-S., S.-O. Hwang, J. Lee, Y.-K. Hyun, Y. Ryu, and K.-O. Boo, 2022: Assimilation of satellite-based soil moisture (SMAP) in KMA GloSea6: The results of the first preliminary experiment. Atmosphere, 32, 395-409, doi:10.14191/Atmos.2022.32.4.395 (in Korean with English abstract).
- Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337, doi:10.14191/Atmos.2015.25.2.323 (in Korean with English abstract).
- Jung, M.-I., S.-W. Son, Y. Lim, K. Song, D. Won, and H.-S. Kang, 2016: Assessment of stratospheric prediction skill of the GloSea5 hindcast experiment. Atmosphere, 26, 203-214, doi:10.14191/Atmos.2016.26.1.203 (in Korean with English abstract).
- Kang, D., M.-I. Lee, J. Im, D. Kim, H.-M. Kim, H.-S. Kang, S. D. Schubert, A. Arribas, and C. MacLachlan, 2014: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 41, 3577-3585, doi:10.1002/2014GL060011.
- Kim, D.-K., Y.-H. Kim, and C. Yoo, 2019: Predictability of Northern Hemisphere teleconnection patterns in GloSea5 hindcast experiments up to 6 Weeks. Atmosphere, 29, 295-309, doi:10.14191/Atmos.2019.29.3.295 (in Korean with English abstract).
- Kim, H., M.-I. Lee, D. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Representation of boreal winter MJO and its teleconnection in a dynamical ensemble seasonal prediction system. J. Climate, 31, 8803-8818, doi:10.1175/JCLI-D-18-0039.1.
- Kim, H., M. A. Janiga, and K. Pegion, 2019: MJO propagation processes and mean biases in the SubX and S2S reforecasts. J. Geophy. Res. Atmos., 124, 9314-9331, doi:10.1029/2019JD031139.
- Kim, H., J. Lee, Y.-K. Hyun, and S.-O. Hwang, 2021: The KMA Global Seasonal Forecasting System (GloSea6) - Part 1: Operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341 (in Korean with English abstract).
- Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-476, doi:10.14191/Atmos.2021.31.5.563 (in Korean with English abstract).
- Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the northern hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/Atmos.2018.28.3.233 (in Korean with English abstract).
- Kim, S.-W., 2019: Optimal ensemble size for Sub-seasonal to Seasonal (S2S) prediction system. M. S. thesis, Dept. of Earth and Environmental Sciences, Seoul National University, 41 pp.
- Kim, T., E. Kim, M. Lee, D.-H. Cha, S.-M. Lee, J. Lee, and K.-O. Boo, 2023: Characteristics of tropical cyclones over the western North Pacific related to extreme ENSO and a climate regime shift in sub-seasonal forecasting with GloSea5. Climate Dyn., 61, 2637-2653, doi:10.1007/s00382-023-06705-x.
- KMA, 2015: Long-range Forecast Work Manual. Korea Meteorological Administration, 110 pp [Available online at http://book.kma.go.kr] (in Korean).
- KMA, 2017: 2016 Year Book. Korea Meteorological Administration, 612 pp [Available online at http://book.kma.go.kr] (in Korean).
- KMA, 2019: 2018 Year Book. Korea Meteorological Administration, 431 pp [Available online at http://book.kma.go.kr] (in Korean).
- KMA, 2021: 2020 Year Book. Korea Meteorological Administration, 322 pp [Available online at http://book.kma.go.kr] (in Korean).
- KMA, 2023: 2022 Year Book. Korea Meteorological Administration, 413 pp [Available online at http://book.kma.go.kr] (in Korean).
- KMA, 2024: 2023 Year Book. Korea Meteorological Administration, 400 pp [Available online at http://book.kma.go.kr] (in Korean).
- Lee, J.-H., H. M. Sung, J. Kim, S. Shim, J.-C. Ha, Y.-H. Byun, and Y.-H. Kim, 2021: Assessment of model performance in East Asia based on the CMIP6 multimodel ensemble. J. Climate Change Res., 12, 461-478, doi:10.15531/KSCCR.2021.12.5.461 (in Korean with English abstract).
- Lee, J., M.-I. Lee, S. Tak, E. Seo, and Y.-K. Lee, 2023: Assimilation of snow water equivalent from AMSR2 and IMS satellite data utilizing the local ensemble transform Kalman filter. Geosci. Model Dev., doi:10.5194/gmd-2023-221 (preprint / in press).
- Lee, M.-I., H.-S. Kang, D. Kim, D. Kim, H. Kim, and D. Kang, 2014: Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system. Asia-Pac. J. Atmos. Sci., 50, 307-326, doi:10.1007/s13143-014-0019-4.
- Lee, S.-J., Y.-K. Hyun, S.-M. Lee, S.-O. Hwang, J. Lee, and K.-O. Boo, 2020: Prediction skill of East Asian summer monsoon indices in KMA Global Seasonal Forecasting System (GloSea5). Atmosphere, 30, 293-309, doi:10.14191/Atmos.2020.30.3.293 (in Korean with English abstract).
- Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecasting system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).
- Lee, S.-M., J. Lee, A.-R. Ko, Y.-K. Hyun, and Y. Kim, 2020: Seasonal forecasting of tropical storms using GloSea5 hindcast. Atmosphere, 30, 209-220, doi:10.14191/Atmos.2020.30.3.209 (in Korean with English abstract).
- Lee, S.-M., Y.-K. Hyun, B. Shin, H. Ji, J. Lee, S.-O. Hwang, and K.-O. Boo, 2024: The seasonal forecast characteristics of tropical cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2). Atmosphere, 34, 97-106. doi:10.14191/Atmos.2024.34.2.097 (in Korean with English abstract).
- Lim, S.-M., Y.-K. Hyun, H.-S. Kang, and S.-W. Yeh, 2018: Prediction skill of East Asian precipitation and temperature associated with El Nino in GloSea5 hindcast data. Atmosphere, 28, 37-51, doi:10.14191/Atmos.2018.28.1.037 (in Korean with English abstract).
- Lim, S.-M., Y.-K. Hyun, H. Ji, and J. Lee, 2021: Application of land initialization and its impact in KMA's operational climate prediction system. Atmosphere, 31, 327-340, doi:10.14191/Atmos.2021.31.3.327 (in Korean with English abstract).
- Lockwood, J. F., and Coauthors, 2022: Predictability of European winter 2020/2021: Influence of a mid-winter sudden stratospheric warming. Atmos. Sci. Lett., 23, e1126, doi:10.1002/asl.1126.
- MacLachlan, C., and Coauthors, 2015: Description of GloSea5: The Met Office high resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
- McPhaden, M. J., 2003: Tropical pacific ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480, doi:10.1029/2003GL016872.
- Moon, J.-Y., K.-Y. Kim, J.-A. Cho, Y.-M. Yang, Y.-K. Hyun, and B.-J. Kim, 2022: Assessment of MJO simulation with Global Coupled (GC) model 2 and 3.1. Atmosphere, 32, 235-246, doi:10.14191/Atmos.2022.32.3.235 (in Korean with English abstract).
- Murray, R., 1970: Recent developments in long-range forecasting in the Meteorological Office. Quart. J. Roy. Meteor. Soc., 96, 329-336, doi:10.1002/qj.49709640817.
- NIMS, 2024: Evaluation of the 2023 Forecasts Performance of the Operational Climate Prediction System (GloSea6). National Institute of Meteorological Sciences, 71 pp [Available online at http://book.kma.go.kr] (in Korean).
- Oh, J., S.-W. Son, and S.-Y. Back, 2022: Influence of UTLS Ozone on the QBO-MJO connection: A case study using the GloSea5 model. Atmosphere, 32, 223-233, doi:10.14191/Atmos.2022.32.3.223 (in Korean with English abstract).
- Palmer, T. N., and Coauthors, 2004: Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull. Amer. Meteor. Soc., 85, 853-872, doi:10.1175/BAMS-85-6-853.
- Park, H.-S., J. Lee, S.-M. Lee, S.-O. Hwang, and K.-O. Boo, 2023: Global ocean data assimilation and prediction system 2 in KMA: Operational system and improvements. Atmosphere, 33, 423-440, doi:10.14191/Atmos.2023.33.4.423 (in Korean with English abstract).
- Park, S., D.-J. Kim, S.-W. Lee, K.-W. Lee, J. Kim, E.-J. Song, and K.-H. Seo, 2017: Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5. Asia-Pac. J. Atmos. Sci., 53, 393-401, doi:10.1007/s13143-017-0035-2.
- Park, Y.-H., Y.-K. Hyun, S.-I. Heo, and H.-S. Ji, 2021; Assessment of the prediction performance of ensemble size-related in GloSea5 hindcast data. Atmosphere, 31, 511-523. doi:10.14191/Atmos.2021.31.5.511 (in Korean with English abstract).
- Scaife, A. A., and Coauthors, 2014; Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41, 2514-2519, doi:10.1002/2014GL059637.
- Scaife, A. A., and Coauthors, 2016: Seasonal winter forecasts and the stratosphere. Atmos. Sci. Lett., 17, 51-56. doi:10.1002/asl.598.
- Seo, E., M.-I. Lee, J.-H. Jeong, H.-S. Kang, and D. Won, 2016: Improvement of soil moisture initialization for a Global Seasonal Forecast System. Atmosphere, 26, 35-45, doi:10.14191/Atmos.2016.26.1.035 (in Korean with English abstract).
- Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Climate Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
- Sheshadri, A., M. Borrus, M. Yoder, and T. Robinson, 2021: Midlatitude error growth in atmospheric GCMs: The role of eddy growth rate. Geophys. Res. Lett., 48, e2021GL096126. doi:10.1029/2021GL096126.
- Singh, D., M. Ting, A. A. Scaife, and N. Martin, 2018: California Winter Precipitation Predictability: Insights from the Anomalous 2015~2016 and 2016~2017 Seasons. Geophys. Res. Lett., 45, 9972-9980, doi:10.1029/2018GL078844.
- Son, S.-W., H. Kim, K. Song, S.-W. Kim, P. Martineau, Y.-K. Hyun, and Y. Kim, 2020: Extratropical prediction skill of the Subseasonal-to-Seasonal (S2S) prediction models. J. Geophys. Res. Atmospheres, 125, e2019-JD031273, doi:10.1029/2019JD031273.
- Song, K., H. Kim, S.-W. Son, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction of GloSea5 model: Part 2. Stratospheric Sudden Warming. Atmosphere, 28, 123-139, doi:10.14191/Atmos.2018.28.2.123 (in Korean with English abstract).
- Stan, C., 2022: The forecast skill of the Northern Hemisphere middle latitudes seasonal oscillation and its impact on the surface air temperature. Geophys. Res. Lett., 49, e2021GL095543, doi:10.1029/2021GL095543.
- Torrence, C., and P. J. Webster, 1998: The annual cycle of persistence in the El Nino-Southern oscillation. Quart. J. Roy. Meteor. Soc., 124, 1985-2004, doi:10.1002/qj.49712455010.
- Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877-926, doi:10.1002/qj.49711850705.
- Webster, P. J., 1995: The annual cycle and the predictability of the tropical coupled ocean-atmosphere system. Meteor. Atmos. Phys., 56, 33-55, doi:10.1007/BF01022520.
- Wedd, R., and Coauthors, 2022: ACCESS-S2: the upgraded Bureau of Meteorology multi-week to seasonal prediction system. J. So. Hemisph. Earth, 72, 218-242, doi:10.1071/ES22026.
- WMO, 2024: 2023 Climate State Report. World Meteorological Organization, 47 pp.