DOI QR코드

DOI QR Code

Analysis of the Effects of Airborne Snowfall Enhancement Experiments Based on Atmospheric Stability: A Case Study of the IJCO-WCE 2019 Campaign

대기 안정도에 따른 인공증설 항공실험 효과 분석: IJCO-WCE 2019 캠페인 사례 연구

  • A-Reum Ko (Research Applications Department, National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Bu-Yo Kim (Research Applications Department, National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Woonseon Jung (Research Applications Department, National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Ji-Hyoung Kim (Peterson Projects & Solutions Korea) ;
  • Jung Mo Ku (Water Resource Information Center of Han River Flood Control Office, Ministry of Environment) ;
  • Ki-Ho Chang (Research Applications Department, National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Joo Wan Cha (Research Applications Department, National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Chulkyu Lee (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Yong Hee Lee (Numerical Data Application Division, Numerical Modeling Center, Korea Meteorological Administration)
  • 고아름 (국립기상과학원 기상응용연구부) ;
  • 김부요 (국립기상과학원 기상응용연구부) ;
  • 정운선 (국립기상과학원 기상응용연구부) ;
  • 김지형 (피터슨프로젝트앤솔루션) ;
  • 구정모 (환경부 한강홍수통제소 수자원정보센터) ;
  • 장기호 (국립기상과학원 기상응용연구부) ;
  • 차주완 (국립기상과학원 기상응용연구부) ;
  • 이철규 (국립기상과학원 관측연구부) ;
  • 이용희 (수치모델링센터 수치자료응용과)
  • Received : 2024.06.25
  • Accepted : 2024.10.16
  • Published : 2024.11.30

Abstract

This study analyzes and compares the results of airborne snowfall enhancement experiments conducted on November 25 and 28, 2019, as part of the International Joint Cloud Observation and Weather Control Experiment (IJCO-WCE) 2019 campaign. The objective was to assess the effects of experimental interventions on cloud precipitation patterns. To address the challenges in verifying artificial snowfall enhancement, this study proposes an innovative approach, utilizing a post-experiment zigzag flight path for in-situ observations. This approach allowed for detailed comparisons between affected and unaffected cloud regions. Precipitation was observed in the target area on the leeward side on November 25, whereas no precipitation was recorded during the November 28 experiment. We concluded that airborne snowfall enhancement is more effective when the lower atmosphere is unstable at the rear of a trough, as confirmed by changes in the distribution of precipitation particles in the clouds and on the ground. Two identical flight experiments were conducted using the KMA/NIMS atmospheric research aircraft, allowing detailed observations. Data collected from onboard cloud observation instruments and six ground stations facilitated detailed analyses of changes in the concentration and size distribution of cloud particles (e.g., supercooled droplets, ice crystals, and snow particles). The method of comparing particle sizes between clouds affected and unaffected by the experiments is used to verify the effectiveness of artificial snowfall enhancement techniques. This methodology could be widely adopted in future studies to improve our understanding of weather modification strategies.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「기상조절 및 구름물리 연구(KMA2018-00224)」 사업의 지원으로 수행되었습니다. 또한, IJCO-WCE 2019 캠페인에 공동으로 참여하여 항공 관측 및 실험 노하우, 항공관측장비 검·교정에 도움을 주신 DMT사의 Dr. Duncan Axisa, Dr. Darrel Baumgardner, Dr. Greg Kok, Mr. Spencer Faber, Ms. Nicole Savage, Mr. Vinayaka Ruge, (주)APM, (주)SPECORE의 과학자 및 기술자분들께 감사드립니다. 또한 본 연구의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원님께 감사를 드립니다.

References

  1. Bae, H., H. Ji, Y.-J. Lim, Y. Ryu, M.-H. Kim, and B.-J. Kim, 2019: Characteristics of drought propagation in South Korea: relationship between meteorological, agricultural, and hydrological droughts. Nat. Hazards, 99, 1-16, doi:10.1007/s11069-019-03676-3.
  2. Baines, P. G., 1979: Observations of stratified flow past Three-dimensional barriers. J. Geophys. Res. Oceans, 84, 7834-7838, doi:10.1029/JC084iC12p07834.
  3. Cha, J. W., and Coauthors, 2019: Analysis of results and techniques about precipitation enhancement by aircraft seeding in Korea. Atmosphere, 29, 481-499, doi:10.14191/Atmos.2019.29.4.481.
  4. Cha, J. W., and Coauthors, 2024: Study on weather modification hybrid rocket experimental design and application. Atmosphere, 34, 203-216, doi:10.14191/Atmos.2024.34.2.203.
  5. Chang, A. T. C., J. L. Foster, P. Gloersen, W. J. Campbell, E. G. Josberger, A. Rango, and Z. F. Danes, 1987: Estimating snowpack parameters in the Colorado River basin. Proc. Large scale effects of seasonal snow cover. Int. Assoc. Hydrol. Sci., Wallingford, Oxfordshire UK, 166 pp.
  6. David, R. O., and Coauthors, 2019: Development of the DRoplet Ice Nuclei Counter Zurich (DRINCZ): validation and application to field-collected snow samples. Atmos. Meas. Tech., 12, 6865-6888, doi:10.5194/amt-12-6865-2019.
  7. DeFelice, T. P., J. Golden, D. Griffith, W. Woodley, D. Rosenfeld, D. Breed, M. Solak, and B. Boe, 2014: Extra area effects of cloud seeding-An updated assessment. Atmos. Res., 135, 193-203, doi:10.1016/j.atmosres.2013.08.014.
  8. Delene, D. J., 2011: Airborne data processing and analysis software package. Earth Sci. Inform., 4, 29-44, doi:10.1007/s12145-010-0061-4.
  9. DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 63-99, doi:10.1016/0169-8095(94)00088-U.
  10. DeMott, P. J., 1997: Report to North Dakota Atmospheric Resource Board and Weather Modification Incorporated on tests of the ice nucleating ability of aerosols produced by the Lohse Airborne Generator. Colorado State University Dept. Atmos. Sci. Rep., 15 pp.
  11. Flossmann, A. I., M. J. Manton, A. Abshaev, R. Bruintjet, M. Murakami, T. Prabhakaran, and Z. Yao, 2018: Peer review report on global precipitation enhancement activities. WMO, hal-01917801f.
  12. Forbes, G. S., D. W. Thomson, and R. A. Anthes, 1987: Synoptic and mesoscale aspects of an appalachian ice storm associated with cold-air damming. Mon. Wea. Rev., 115, 564-591, doi:10.1175/1520-0493(1987)115<0564>2.0.CO;2.
  13. French, J. R., K. Friedrich, S. A. Tessendorf, R. M. Rauber, B. Geerts, R. M. Rasmussen, L. Xue, M. L. Kunkel, and D. R. Blestrud, 2018: Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci., 115, 1168-1173, doi:10.1073/pnas.1716995115.
  14. Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary-layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 2344-2365, doi:10.1175/JASD-10-05009.1.
  15. Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015a: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644-665, doi:10.1175/MWR-D-14-00199.1.
  16. Geerts, B., B. Pokharel, and D. A. R. Kristovich, 2015b: Blowing snow as a natural glaciogenic cloud seeding mechanism. Mon. Wea. Rev., 143, 5017-5033, doi:10.1175/mwr-d-15-0241.1.
  17. Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26-28, doi:10.1038/249026a0.
  18. Heggli, M. F., L. Vardiman, R. E. Stewart, and A. Huggins, 1983: Supercooled liquid water and ice crystal distributions within Sierra Nevada winter storms. J. Appl. Meteor. Climatol., 22, 1875-1886, doi:10.1175/1520-0450(1983)022<1875:slwaic>2.0.co;2.
  19. Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor. Climatol., 14, 783-804, doi:10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.
  20. Yang, H. Y., K.-H. Chang, S. Chae, E. Jung, S. Seo, J.-Y. Jeong, J.-H. Lee, Y. Ro, and B.-J. Kim, 2018: Case study of ground-based glaciogenic seeding of clouds over the Pyeongchang region. Adv. Meteor., 2018, 16, doi:10.1155/2018/9465923.
  21. Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 3016-3043, doi:10.1175/JAS3999.1.
  22. Jang, S. H., J.-K. Lee, J. H. Oh, J. W. Jo, and Y. Cho, 2019: The probabilistic drought prediction using the improved surface water supply index in the Korean peninsula. Hydrol. Res., 50, 393-415, doi:10.2166/nh.2018.045.
  23. Jung, W., and Coauthors, 2022: Progressive and prospective technology for cloud seeding experiment by unmanned aerial vehicle and atmospheric research aircraft in Korea. Adv. Meteor., 2022, 14, doi:10.1155/2022/3128657.
  24. Khatri, K. B., B. Pokharel, and C. Strong, 2021: Development of hydrologically-based cloud seeding suspension criteria in the Western United States. Atmos. Res., 262, 105768, doi:10.1016/j.atmosres.2021.105768.
  25. Kim, Y.-J., M.-K. Kim, and J. G. Lee, 2019: The relationship of froude number and developed cloud band locations near Yeongdong region under the siberian high pressure system. Atmosphere, 29, 325-342, doi:10.14191/ATMOS.2019.29.3.325.
  26. Kim, B.-Y., J.-W. Cha, A.-R. Ko, W. S. Jung, and J.-C. Ha, 2020a: Analysis of the occurrence frequency of seedable clouds on the Korean Peninsula for precipitation enhancement experiments. Remote Sens., 12, 1487, doi:10.3390/rs12091487.
  27. Kim, B.-Y., J.-W. Cha, W. S. Jung, and A.-R. Ko, 2020b: Precipitation enhancement experiments in catchment areas of dams: Evaluation of water resource augmentation and economic benefits. Remote Sens., 12, 3730, doi:10.3390/rs12223730.
  28. Koo, H.-J., and Coauthors, 2024: Development and case study of unmanned aerial vehicles (UAVs) for weather modification experiments. Atmosphere, 34, 35-53, doi:10.14191/Atmos.2024.34.1.035.
  29. Ku, J. M., A.-R. Ko, S. Chae, H. J. Hwang, Y. Ro, and W. S. Jung, 2020: Analysis of cloud seeding experiment by aircraft: A case study of an international joint experiment in 2019. J. Korean Soc. Hazard Mitig., 20, 67-78, doi:10.9798/KOSHAM.2020.20.6.67.
  30. Kumjian, M. R., and K. A. Lombardo, 2017: Insights into the evolving microphysical and kinematic structure of Northeastern U.S. winter storms from dual-polarization Doppler radar. Mon. Wea. Rev., 145, 1033-1061, doi:10.1175/MWR-D-15-0451.1.
  31. Lee, M. J., and Coauthors, 2009: Preliminary results of the ground-based orographic snow enhancement experiment for the easterly cold fog (cloud) at Daegwallyeong during the 2006 winter. Adv. Atmos. Sci., 26, 222-228, doi:10.1007/s00376-009-0222-x.
  32. Lee, J.-E., S.-H. Jung, H.-M. Park, S. Kwon, P.-L. Lin, and G. Lee, 2015: Classification of precipitation types using fall velocity-diameter relationships from 2D-video distrometer measurements. Adv. Atmos. Sci., 32, 1277-1290, doi:10.1007/s00376-015-4234-4.
  33. Mason, P. J., and R. I. Sykes, 1978: On the interaction of topography and Ekman boundary layer pumping in a stratified atmosphere. Quart. J. Roy. Meteor. Soc., 104, 475-490, doi:10.1256/smsqj.44017.
  34. Mazzetti, T. O., B. Geerts, L. Xue, S. Tessendorf, C. Weeks, and Y. Wang, 2021: Potential for ground-based glaciogenic cloud seeding over mountains in the interior Western United States and anticipated changes in a warmer climate. J. Appl. Meteor. Climatol., 60, 1245-1263, doi:10.1175/JAMC-D-20-0288.1.
  35. Petheram, C., and T. A. McMahon, 2019: Dams, dam costs and damnable cost overruns. J. Hydrol. X, 3, 100026, doi:10.1016/j.hydroa.2019.100026.
  36. Pruppacher, H. R., J. D. Klett, and P. K. Wang, 1998: Microphysics of clouds and precipitation. Kluwer Academic Publishers, 954 pp, doi:10.1080/02786829808965531.
  37. Rauber, R. M., and L. O. Grant, 1987: Supercooled liquid water structure of a shallow orographic cloud system in Southern Utah. J. Climate Appl. Meteor., 26, 8 pp [Available online at http://www.jstor.org/stable/26183177].
  38. Rasmussen, R. M., S. A. Tessendorf, L. Xue, C. Weeks, K. Ikeda, S. Landolt, D. Breed, T. Deshler, and B. Lawrence, 2018: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling. J. Appl. Meteor. Climatol., 57, 2639-2660, doi:10.1175/JAMC-D-17-0335.1.
  39. Rosenfeld, D., D. Axisa, W. L. Woodley, and R. Lahav, 2010: A quest for effective hygroscopic cloud seeding. J. Appl. Meteor. Climatol., 49, 1548-1562, doi:10.1175/2010JAMC2307.1.
  40. Silverman, B. A., 2001: A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Amer. Meteor. Soc., 82, 903-924, doi:10.1175/1520-0477(2001)082<0903:ACAOGS>2.3.CO;2.
  41. Smith, R. B., 1982: Synoptic observations and theory of orographically disturbed wind and pressure. J. Atmos. Sci., 39, 60-70, doi:10.1175/1520-0469(1982)039<0060:SOATOO>2.0.CO;2.
  42. Um, J., 2020: Calculations of optical properties of cloud particles to improve the accuracy of forward scattering probes for In-Situ aircraft cloud measurements. Atmosphere, 30, 75-89, doi:10.14191/ATMOS.2020.30.1.075.
  43. Vali, G., D. Leon, and J. R. Snider, 2012: Ground-layer snow clouds. Quart. J. Roy. Meteor. Soc., 138, 1507-1525, doi:10.1002/qj.1882.
  44. WWDR., 2020: The united nations world water development report 2020: water and climate change. UNESCO Publishing: Paris, France, World Water Development Report, 219 pp [Available online at https://www.unwater.org/publications/un-world-water-development-report-2020].
  45. Xie, X., R. Evaristo, S. Troemel, P. Saavedra, C. Simmer, and A. Ryzhkov, 2016: Radar observation of evaporation and implications for quantitative precipitation and cooling rate estimation. J. Atmos. Oceanic Technol., 33, 1779-1792, doi:10.1175/JTECH-D-15-0244.1.