DOI QR코드

DOI QR Code

금속 도핑된 탄소나노튜브 필터의 전기화학적 특성평가

Electrochemical Characterization of Metal-Doped Carbon Nanotube Filters

  • 양소영 (경북대학교 물산업융복합연구소) ;
  • 손영수 (대구가톨릭대학교 의료공학과)
  • So Young Yang (Advanced Institute of Water Industry, Kyungpook National University) ;
  • Young-Soo Sohn (Department of Biomedical Engineering, Catholic University of Daegu)
  • 투고 : 2024.08.26
  • 심사 : 2024.10.10
  • 발행 : 2024.10.31

초록

In this study, Sb doped SnO2/carbon nanotube (Sb-SnO2/CNT (SS/CNT)), Ni-Sb-SnO2/CNT (Ni-SS/CNT), Co-Sb-SnO2/CNT (Co-SS/CNT) and Fe-Sb-SnO2/CNT (Fe-SS/CNT) filters were fabricated on the surfaces of CNTS via electrosorption using Sb-SnO2 with the co-dopants Ni, Co, or Fe, which are widely used as electrocatalysts. The electrochemical activities of the CNT and modified CNT filters were compared by investigating the adsorption and decomposition of phenol, and oxidation of ferrocyanide. The CNT filter and modified filters respectively exhibited 8.05% and 5.02% ~ 6.67% phenol adsorption. However, phenol decomposition increased by approximately 1.50- and 1.64-fold over the Fe-SS/CNT and Ni-SS/CNT filters compared that over the CNT filter, respectively, indicating that the electrochemical activity was increased via metal doping (Fe, Ni) of the CNT surface. Among the modified CNT filters, the Fe-SS/CNT filter displayed higher levels of phenol-based total organic carbon removal and current efficiency (19.2% and 14.9%, respectively) than those of the other CNT filters, and it exhibited the fastest ferrocyanide oxidation.

키워드

과제정보

이 논문은 2023년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 기초연구사업으로 수행되었습니다(No. RS-2023-00237995).

참고문헌

  1. Balasubramanian, K., Burghard, M., 2005, Chemically functionalized carbon nanotubes, Small, 1, 180-192. https://doi.org/10.1002/smll.200400118
  2. Deng, S., Zhang, Q., Nie, Y., Wei, H., Wang, B., Huang, J., Xing, B., 2012, Sorption mechanisms of perfluorinated compounds on carbon nanotubes, Environ. Pollut., 168, 138-144. https://doi.org/10.1016/j.envpol.2012.03.048
  3. Deng, X., Tuysuz, H., 2014, Cobalt-oxide-based materials as water oxidation catalyst: Recent progress and challenges, ACS Catal., 4, 3701-3714. https://doi.org/10.1021/cs500713d
  4. Gao, G., Vecitis, C. D., 2011, Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry, Environ. Sci. Tech., 45, 9726-9734. https://doi.org/10.1021/es202271z
  5. Gao, G., Vecitis, C. D., 2012, Doped carbon nanotube networks for electrochemical filtration of aqueous phenol: Electrolyte precipitation and phenol polymerization, ACS Appl. Mater. Inter., 4, 1478-1489. https://doi.org/10.1021/am2017267
  6. Hu, F., Cui, X., Chen, W., 2010, Pulse electrocodeposition of Ti/SnO2-Sb2O4-CNT electrode for phenol oxidation, Electrochem. Solid-State Lett., 13, F20-F23. https://doi.org/10.1149/1.3457858
  7. Jame, S. A., Zhou, Z., 2016, Electrochemical carbon nanotube filters for water and wastewater treatment, Nanotechnol. Rev., 5, 41-50. https://doi.org/10.1515/ntrev-2015-0056
  8. Liu, H., Vajpayee, A., Vecitis, C. D., 2013, Bismuth-doped tin oxide-coated carbon nanotube network: Improved anode stability and efficiency for flow-through organic electrooxidation, ACS Appl. Mater. Inter., 5, 10054-10066. https://doi.org/10.1021/am402621v
  9. Liu, H., Vecitis, C. D., 2012, Reactive transport mechanism for organic oxidation during electrochemical filtration: Mass-transfer, physical adsorption, and electrontransfer. J. Phys. Chem. C, 116, 374-383. https://doi.org/10.1021/jp209390b
  10. Liu, Y., Lee, J. H. D., Xia, Q., Ma, Y., Yu, Y., Yung, L. Y. L., Xie, J., Ong, C. N., Vecitis, C. D., Zhou, Z., 2014, A Graphene-based electrochemical filter for water purification, J. Mater. Chem. A, 2, 16554-16562. https://doi.org/10.1039/C4TA04006F
  11. Pan, B., Xing, B., 2008, Adsorption mechanisms of organic chemicals on carbon nanotubes, Environ. Sci. Technol., 42, 9005-9013. https://doi.org/10.1021/es801777n
  12. Rahaman, M. S., Vecitis, C. D., Elimelech M., 2012, Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter, Environ. Sci. Technol., 46, 1556-1564. https://doi.org/10.1021/es203607d
  13. Ren, X. M., Chen, C. L., Nagatsu, M., Wang, X. K., 2011, Carbon nanotubes as adsorbents in environmental pollution management: A Review, J. Chem. Eng., 170, 395-410. https://doi.org/10.1016/j.cej.2010.08.045
  14. Schnoor, M. H., Vecitis, C. D., 2013, Quantitative examination of aqueous ferrocyanide oxidation in a carbon nanotube electrochemical filter: Effects of flow rate, ionic strength, and cathode material, J. Phys. Chem. C, 117, 2855-2867. https://doi.org/10.1021/jp3112099
  15. Simic, M. D., Savic, B. G., Ognjanovic, M. R., Stankovic, D. M., Relic, D. J., Acimovic, D. D., Brdaric, T. P., 2023, Degradation of bisphenol A on SnO2-MWCNT electrode using electrochemical oxidation, J. Water Process. Eng., 51, 103416.
  16. Vecitis, C. D., Gao, G., Liu, H., 2011, Electrochemical carbon nanotube filter for adsorption, desorption, and oxidation of aqueous dyes and anions, J. Phys. Chem. C, 115, 3621-3629. https://doi.org/10.1021/jp111844j
  17. Yang, S. Y., Choo, Y. S., Kim, S., Lim, S. K., Lee, J., Park, H., 2012, Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals, Appl. Catal. B: Environ., 111-112, 317-325. https://doi.org/10.1016/j.apcatb.2011.10.014
  18. Yang, S. Y., Vecitis, C. D., Park, H., 2019, Electrocatalytic water treatment using carbon nanotube filters modified with metal oxides, Environ. Sci. Pollut. Res., 26, 1036-1043. https://doi.org/10.1007/s11356-017-8495-6