DOI QR코드

DOI QR Code

공기분급을 이용한 제강슬래그 선별 연구

The Study on the Separation of Steelmaking Slags Using Air Classification

  • 남설지 (포항산업과학연구원 부산물자원화연구그룹) ;
  • 조성구 (포항산업과학연구원 부산물자원화연구그룹) ;
  • 이훈하 (포항산업과학연구원 부산물자원화연구그룹)
  • Seolji Nam (Research Institute of Industrial Science & Technology, By-product Resources Research Group) ;
  • Sungkoo Jo (Research Institute of Industrial Science & Technology, By-product Resources Research Group) ;
  • Hoonha Lee (Research Institute of Industrial Science & Technology, By-product Resources Research Group)
  • 투고 : 2024.09.19
  • 심사 : 2024.10.21
  • 발행 : 2024.10.31

초록

국내 온실가스 다배출 산업 중 하나로 손꼽히는 시멘트 산업은 연간 3,900만ton 가량의 온실가스를 배출하며, 이 중 절반 이상이 석회석(CaCO3)이 하소되는 과정에서 기인한다. 이에 본 연구에서는 국내 P사(社)에서 발생하는 전로슬래그를 대상으로 볼밀 분쇄 기술 및 공기 분급 기술을 적용하여 공정 조건 변경에 따른 주요 성분들의 선별 거동을 탐색하였으며, 특히 공기 분급 기술을 적용하여 슬래그 내부 비탄산염 성분인 CaO와 철질 원료인 Fe의 선별 거동을 파악하고자 하였다. 연구 결과 공기 분급기 로터의 회전속도가 증가함에 따라 CaO 함량이 최대 9.97% 증가, Fe 함량은 최대 24.27% 감소하였으며, 회수율을 고려하였을 때 로터의 회전 속도가 5,000rpm 이하가 되도록 작동하는 것이 효율적임을 도출하였다. 본 연구를 통해 제철공정 부산물인 슬래그를 활용하여 시멘트 소성용 대체 원료로 활용하기 위해 공기 분급 기술이 유용성을 입증하였으며, 슬래그 내부 CaO, Fe, Cr 함량을 제어 가능성을 확인하였다.

The cement industry, one of the major greenhouse gas-emitting sectors in South Korea, produces approximately 39 million tons of greenhouse gases annually, with over half of this emission stemming from the calcination of limestone (CaCO3). This study investigates the behavior of key components in slag generated by Company "P", utilizing ball mill grinding technology and air classification technology to explore the effects of process condition changes. In particular, the study aims to understand the separation behavior of CaO and Fe within the slag through the application of air classification technology. The results indicate that as the rotor speed of the air classifier increases, the CaO content increases by up to 9.97%, while the Fe content decreases by up to 24.27%. Considering the recovery rate, it was determined that operating the rotor at a speed below 5,000 rpm is efficient. This study demonstrates the utility of air classification technology for utilizing slag, a byproduct of steelmaking, as an alternative raw material for cement calcination, confirming the potential to control the contents of CaO, Fe, and Cr in the slag.

키워드

과제정보

이 연구는 2024년도 산업통상자원부 및 산업기술기획평가원(KEIT) 연구비 지원에 의한 연구임(RS-2022-00155067).

참고문헌

  1. Youngjun Lee, Doyoung Kwon, Bilguun Mend, et al., 2024 : Physical Properties of Cement Using Slag as Raw Mix of Clinker, Resources Recycling, 33(3), pp.12-30. 
  2. Goeun Lee, 2022 : Carbon neutrality promotion strategy and policy tasks of the domestic cement industry, The Industrial Research Institute, https://d.kiet.re.kr/kiet_web/?sub_num=8&state=view&idx=59307, September 10, 2024. 
  3. Ingyu Kang, Jinman Kim, Sangchul Shin, et al., 2024 : Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement, Journal of the Korean Recycled Construction Resources Institute, 12(1), pp.82-93. 
  4. Emad Benhelal, Gholamreza Zahedi, Ezzatollah Shamsaei, et al., 2013 : Global strategies and potentials to curb CO2 emissions in cement industry, Journal of Cleaner Production, 51, pp.142-161. 
  5. Emad Benhelal, Ezzatollah Shamsaei, Muhammad Imran Rashid, 2021 : Challenges against CO2 abatement strategies in cement industry: A review, Journal of Environmental Sciences, 104, pp.84-101. 
  6. Teresa Annunziata Branca, Valentina Colla, David Algermissen, et al., 2020 : Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe, Metals, 10(3), 345. 
  7. Zhanjun Wang, Il Sohn, 2019 : A Review on Reclamation and Reutilization of Ironmaking and Steelmaking Slags, Journal of Sustainable Metallurgy, 5(1), pp.127-140. 
  8. Isa Yuksel, 2017 : A review of steel slag usage in construction industry for sustainable development, Environment, Development and Sustainability, 19(2), pp.369-384. 
  9. Ismael Matino, Teresa Annunziata Branca, 2019 : Scenario Analyses for By-Products Reuse in Integrated Steelmaking Plants by Combining Process Modeling, Simulation, and Optimization Techniques, Steel Research International, 90(10), 1900150. 
  10. Valentina Colla, Teresa Annunziata Branca, Roland Pietruck, et al., 2023 : Future Research and Developments on Reuse and Recycling of Steelmaking By-Products, Metals, 13(4), 676. 
  11. Wenhao Gao, Wentao Zhou, 2023 : Comprehensive utilization of steel slag: A review, Powder Technology, 422, 118449. 
  12. Korea Steel Association, 2023 : Steel Slag 2022 Recycling Performance and 2023 Recycling Plan, https://www.kosa.or.kr/, September 5, 2024. 
  13. Kwangseok Lee, Seul-ki Jo, Doyun Shin, et al., 2014 : Upgrading of Iron from Waste Copper Slag by A Physicochemical Separation Process, Resources Recycling, 23(3), pp.30-36. 
  14. Hoonha Lee, 2012, KR, 10-1215412. 
  15. Nipon Denmud, Kradsanai Baite, Thawatchai Plookphol, et al., 2019 : Effects of Operating Parameters on the Cut Size of Turbo Air Classifier for Particle Size Classification of SAC305 Lead-Free Solder Powder, Processes, 7(7), 427.