DOI QR코드

DOI QR Code

구연산(Citric Acid)폐액 재활용을 위한 구연산 회수 기술 분석

Analysis of Citric Acid Recovery Technology for Recycling of Citric Acid from Waste Solution

  • 안재우 (대진대학교 신소재공학과) ;
  • 서민혁 (대진대학교 신소재공학과) ;
  • 이영재 (대진대학교 신소재공학과)
  • Jaewoo Ahn (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Minhyuk Seo (Department of Advanced Materials Sci. & Eng., Daejin University) ;
  • Youngjae Lee (Department of Advanced Materials Sci. & Eng., Daejin University)
  • 투고 : 2024.09.05
  • 심사 : 2024.09.23
  • 발행 : 2024.10.31

초록

구연산은 다양한 산업에 응용되고 있고 수요가 꾸준히 증가하고 있는 유기산의 일종이다. 구연산의 경우는 주로 미생물 발효과정을 통해 생성된 발효액에서 분리·정제 등의 회수 공정을 거쳐 생산을 하고 있다. 회수 공정은 그동안 주로 침전 기술을 위주로 하여 용매추출 및 이온교환수지, 전기막 분리 기술 등 다양한 기술들이 꾸준히 개발되어 왔다. 본 연구에서는 현재 상용화된 기술 또는 개발되고 있는 구연산의 회수 기술들을 분석해 보고 향후 구연산 폐액 등의 재활용 공정에 적용하기 위하여 보다 효율적이고 친환경적인 구연산 회수기술 개발의 방향을 제시하고자 하였다.

Citric acid is an organic acid used in various industries, and its demand is steadily increasing. Citric acid is primarily obtained via recovery processes, such as the separation and purification of the fermentation broth obtained from microbial fermentation. Various technologies have been developed for the recovery processes, such as solvent extraction, ion exchange resins, and electromembrane separation, with a primary focus on precipitation methods. This study examines citric acid recovery technologies that are both commercially available and are being developed and suggests directions for the development of more efficient and eco-friendly recovery technologies, particularly for recycling waste citric acid solutions.

키워드

과제정보

본 연구는 2024년도 산업통상자원부의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구과제(소재부품기술개발사업 No. 20018884)이며, 이에 감사드립니다.

참고문헌

  1. Global Citric Acid Market Outlook, n.d. https://www.expertmarketresearch.com/reports/citric-acid-market, April 22, 2024. 
  2. M. Berovic, M. Legisa, 2007 : Citric acid production, Biotechnology Annual Review, 13, pp.303-343. 
  3. B. Iglinski, Urszula K., Grzegorz P., 2022 : Proecological aspects of citric acid technology, Technologies and Environmental Policy, 24(9), pp.2061-2079. 
  4. Mores S., de Souza Vandenberghe L. P., 2021 : Citric acid bioproduction and downstream processing : Status, opportunities, and challenges, Bioresource Technology, 320, pp.124426. 
  5. B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.727-749. 
  6. Itzel A. Cruz-Rodriguez, Norma G. Rojas-Avelizapa, Andrea M. Rivas-Castillo, 2022 : Microbially-produced organic acids as leaching agents for metal recovery process, Advancements of Microbiology, 61(4), pp.179-190. 
  7. X. Chen, L. Cao, D. Kang, et al., 2015 : Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries, Waste Management, 38, pp.349-356. 
  8. Fan B., Chen X., Zhou T., et al., 2016 : A sustainable process for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. Res., 34, pp.474-481. 
  9. Musariri B., Akdogan G., Dorfling C., et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117. 
  10. Meng F., Liu Q., Rina K., et al., 2020 : Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis, Hydrometallurgy, 191, pp.105160. 
  11. Golmohammadzadeh R., Faraji F., Rashchi F., 2018 : Recovery of lithium and cobalt from spent lithium ion batteries(LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435. 
  12. J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944. 
  13. P. Moazzam, Y. Boroumand, P. Rabiei, et al., 2021 : Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, 277, pp.130196. 
  14. Horeh N. B., Mousavi S. M., Shojaosadati S. A., 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266. 
  15. Gerold E., Schinnerl C., Antrekowitsch H., 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(4), pp.1-16. 
  16. Hongjian Z., Jian X., Xianfeng S., et al., 2017 : Citric acid production by recycling its wastewater treated with anaerobic digestion and nanofiltration, Process Biochemistry, 58, pp.245-251. 
  17. Amato A., Becci A., Beolchini F., 2020 : Citric acid bioproduction: the technological innovation change, Crit. Rev. Biotechnol., 40, pp.199-212. 
  18. Garry D., Satinder K. B., Mausam V., et al., 2011 : Recent Advances in Citric Acid Bio-production and Recovery, Food Bioprocess Technol., 4, pp.505-529. 
  19. Straathof A. J. J., 2011 : The Proportion of Downstream Costs in Fermentative Production Processes, in: Comprehensive Biotechnology, pp.811-814., 2nd Edition, Elsevier Inc., Noord-Holland, Netherlands. 
  20. Harrison R. G., Todd P. W., Rudge S. R., et al., 2015 : Bioseparations science and engineering, 2nd, Oxford University Press, New York, USA 
  21. M. Pazouki, T. Panda, 1998 : Recovery of citric acid-a review, Bioprocess Engineering, 19, pp.435-439. 
  22. Shishikura A., Kimbara H., Yamaguchi K., et al., 1992 : Process For Recovering High purity Organic Acid, EP 0477928. 
  23. Yeon Ki Hong, Won Hi Hong, and Dong Hoon Han, 2001. Application of Reactive Extraction to Recovery of Carboxylic Acids, Biotechnol. Bioprocess Eng., 6, pp.386-394. 
  24. Rani, K. N. P., Kumar, T. P., Murthy, J. S. N., et al., 2010 : Equilibria, Kinetics, and Modeling of Extraction of Citric Acid from Aqueous Solutions with Alamine 336 in 1-Octanol, Sep. Sci. Technol., 45, pp.654-662. 
  25. Thakre, N., Prajapati, A. K., Mahapatra, S. P., et al., 2016. Modeling and Optimization of Reactive Extraction of Citric Acid. J. Chem. Eng. Data, 61, pp.2614-2636. 
  26. Bizek V., Horacek J., Kousova M., et al., 1993 : Amine extraction of citric acid: effect of diluent, Chem. Eng. Sci., 48, pp.1447-1457. 
  27. Datta D., Asci Y. S., Tuyun A. F., et al., 2015a : Intensification of citric acid extraction by a mixture of trioctylamine and tridodecylamine in different diluents, J. Chem. Eng. Data, 60, pp.960-965. 
  28. W. Takatsuji, H. Yoshida, 1997 : Adsorption of Organic Acids on Weakly Basic Ion Exchanger: Equilibria, J. Chem. Eng. Japan, 30(3), pp.396-405. 
  29. Wennersten R., 1983 : The extraction of citric acid from fermentation broth using a solution of a tertiary amine, J. Chem. Technol. Biotechnol., 33, pp.85-94. 
  30. Keshav A., Norge P., Wasewar K. L., 2012 : Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents : Part 1 - Equilibrium Studies from Aqueous Solutions, Appl. Biochem. Biotechnol., 167, pp.197-213. 
  31. Liu L., Wei Q., Zhou Y., et al., 2020 : Using dialkyl amide via forming hydrophobic deep eutectic solvents to separate citric acid from fermentation broth, Green Chem., 22, pp.2526-2533. 
  32. Rongjie L., Shenglong P., Haitao S., 2017 : Extracting and separating method for organic acid, CN107281778A. 
  33. P. Gluszcz, T. Jamroz, B. Sencio, et al., 2004 : Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins, Bioprocess and Biosystems Engineering, 26, pp.185-190. 
  34. M. Van den Bergh, B. Van de Voorde, D. De Vos, 2017 : Adsorption and Selective Recovery of Citric Acid with Poly(4-vinylpyridine), ChemSusChem, 10, pp.4864-4871. 
  35. C. Jacinto, E. Ramos, D. Lopez, 2020 : Citric Acid Recovery from a Synthetic Fermentation Broth by Ion Exchange Resin, BISTUA Rev. FCB, 18(2), pp.9-14. 
  36. Wu J., Oijun P., Wolfgang A., et al., 2009 : Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth, J. Chromatogr. A, 1216, pp.8793-8805. 
  37. Delgado Dobladez J. A., Vincente ismael A. M., Dora Lucia U. S., et al., 2019 : Citric Acid Purification by Simulated Moving Bed Adsorption with Methanol as Desorbent, Sep. Sci. Technol., 54, pp.930-942. 
  38. Wang J., Cui Z., Li Y., et al., 2020 : Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods, J. Clean. Prod., 249, 119315. 
  39. Handojo L., Wardani A. K., Regina D., et al., 2019 : Electro-membrane processes for organic acid recovery, RSC Adv., 9, pp.7854-7869. 
  40. Yeon-Chul Cho, Ki-Hun Kim, Jae-Woo Ahn, 2022 : Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.3-19. 
  41. Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662. 
  42. Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93. 
  43. Novalic S., Jagschits F., Okwor J., et al., 1995 : Behaviour of citric acid during electrodialysis, J. Membrane Sci., 108, pp.201-205. 
  44. R. Nikbakht, M. Sadrzadeh, T. Mohammadi, 2007 : Effect of operating parameters on concentration of citric acid using electrodialysis, Journal of Food Engineering, 83(4), pp. 596-604. 
  45. A. Chandra, J. Ganesh Dattatreya Tadimeti, C. Sujay, 2018 : Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes, Chinese Journal of Chemical Engineering, 26(2), pp.278-292. 
  46. Novalic S., James O., Klaus D. K., 1996 : The characteristics of citric acid separation using electrodialysis with bipolar membranes, Desalination, 105, pp.277-282. 
  47. Novalic S., Kongbangkerd T., Klaus D. K., 2000 : Recovery of organic acids with high molecular weight using a combined electrodialytic process, J. Membr. Sci., 166, pp.99-104. 
  48. P. Pinacci, M. Radaelli, 2002 : Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes, Desalination, 148, pp.177-179. 
  49. Xu T., 2001 : Development of bipolar membrane-based processes, Desalination, 140, pp.247-258. 
  50. Xu T., Weihua Y., 2002a : Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, Journal of Membrane Science, 203(1-2), pp.145-153. 
  51. Xu T., Weihua Y., 2002b : Citric acid production by electrodialysis with bipolar membranes, Chemical Engineering and Processing, 41, pp.519-524. 
  52. B. Iglinski, S. Koter, R. Buczkowski, 2006 : Production of Citric Acid Using Electrodialysis with Bipolar Membrane of Sodium Citrate Solutions, Polish J. of Environ. Stud., 15(3), pp.411-417. 
  53. C. Huang, T. Xu, Y. Zhang, et al., 2007 : Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, Journal of Membrane Science, 288, pp.1-12. 
  54. Y. Wang, N. Zhang, C. Huang, et al., 2011 : Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations, J. Membr. Sci., 385-386, pp.226-233. 
  55. Sun X., Lu H., Wang J., 2016 : Recovery of citric acid from fermented liquid by bipolar membrane electrodialysis, J. Clean. Prod., 143, pp.250-256. 
  56. I. N Widiasa, P. D Sutrisna, I. G. Wenten, 2004 : Performance of a novel electrodeionization technique during citric acid recovery, Sep. Purif. Technol., 39, pp.89-97. 
  57. K. Zhang, M. Wang, D. Wang, et al., 2009 : The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis, J. Membr. Sci., 341, pp.246-251. 
  58. A. Rehouma, B. Belaissaoui, A. Hannachi, et al., 2013 : Bipolar membrane electrodialysis and ion exchange hybridizing for dilute organic acid solutions treatment, Desalination and Water Treatment, 51, pp.511-517. 
  59. M. Jaouadi, J. Ding, A. Hannachi, et al., 2017 : IEX and BMED hybrid process for dilute organic acids recovery: identification of key steps to manage energy consumption, Desalination and Water Treatment, 69, pp.123-129.