Acknowledgement
본 연구는 2024년도 산업통상자원부의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구과제(소재부품기술개발사업 No. 20018884)이며, 이에 감사드립니다.
References
- Global Citric Acid Market Outlook, n.d. https://www.expertmarketresearch.com/reports/citric-acid-market, April 22, 2024.
- M. Berovic, M. Legisa, 2007 : Citric acid production, Biotechnology Annual Review, 13, pp.303-343.
- B. Iglinski, Urszula K., Grzegorz P., 2022 : Proecological aspects of citric acid technology, Technologies and Environmental Policy, 24(9), pp.2061-2079.
- Mores S., de Souza Vandenberghe L. P., 2021 : Citric acid bioproduction and downstream processing : Status, opportunities, and challenges, Bioresource Technology, 320, pp.124426.
- B. C. Behera, 2020 : Citric acid from Aspergillus niger: a comprehensive overview, Critical Reviews in Microbiology, 46(6), pp.727-749.
- Itzel A. Cruz-Rodriguez, Norma G. Rojas-Avelizapa, Andrea M. Rivas-Castillo, 2022 : Microbially-produced organic acids as leaching agents for metal recovery process, Advancements of Microbiology, 61(4), pp.179-190.
- X. Chen, L. Cao, D. Kang, et al., 2015 : Hydrometallurgical Processes for Valuable Metals Recycling from Spent Lithium-Ion Batteries, Waste Management, 38, pp.349-356.
- Fan B., Chen X., Zhou T., et al., 2016 : A sustainable process for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. Res., 34, pp.474-481.
- Musariri B., Akdogan G., Dorfling C., et al., 2019 : Evaluating organic acids as alternative leaching reagents for metal recovery from lithium ion batteries, Miner. Eng., 137, pp.108-117.
- Meng F., Liu Q., Rina K., et al., 2020 : Selective recovery of valuable metals from industrial waste lithium-ion batteries using citric acid under reductive conditions: Leaching optimization and kinetic analysis, Hydrometallurgy, 191, pp.105160.
- Golmohammadzadeh R., Faraji F., Rashchi F., 2018 : Recovery of lithium and cobalt from spent lithium ion batteries(LIBs) using organic acids as leaching reagents: A review, Resour. Conserv. Recycl., 136, pp.418-435.
- J. J. Roy, B. Cao, S. Madhavi, 2021 : A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach, Chemosphere, 282, pp.130944.
- P. Moazzam, Y. Boroumand, P. Rabiei, et al., 2021 : Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries, Chemosphere, 277, pp.130196.
- Horeh N. B., Mousavi S. M., Shojaosadati S. A., 2016 : Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sources, 320, pp.257-266.
- Gerold E., Schinnerl C., Antrekowitsch H., 2022 : Critical Evaluation of the Potential of Organic Acids for the Environmentally Friendly Recycling of Spent Lithium-Ion Batteries, Recycling, 7(4), pp.1-16.
- Hongjian Z., Jian X., Xianfeng S., et al., 2017 : Citric acid production by recycling its wastewater treated with anaerobic digestion and nanofiltration, Process Biochemistry, 58, pp.245-251.
- Amato A., Becci A., Beolchini F., 2020 : Citric acid bioproduction: the technological innovation change, Crit. Rev. Biotechnol., 40, pp.199-212.
- Garry D., Satinder K. B., Mausam V., et al., 2011 : Recent Advances in Citric Acid Bio-production and Recovery, Food Bioprocess Technol., 4, pp.505-529.
- Straathof A. J. J., 2011 : The Proportion of Downstream Costs in Fermentative Production Processes, in: Comprehensive Biotechnology, pp.811-814., 2nd Edition, Elsevier Inc., Noord-Holland, Netherlands.
- Harrison R. G., Todd P. W., Rudge S. R., et al., 2015 : Bioseparations science and engineering, 2nd, Oxford University Press, New York, USA
- M. Pazouki, T. Panda, 1998 : Recovery of citric acid-a review, Bioprocess Engineering, 19, pp.435-439.
- Shishikura A., Kimbara H., Yamaguchi K., et al., 1992 : Process For Recovering High purity Organic Acid, EP 0477928.
- Yeon Ki Hong, Won Hi Hong, and Dong Hoon Han, 2001. Application of Reactive Extraction to Recovery of Carboxylic Acids, Biotechnol. Bioprocess Eng., 6, pp.386-394.
- Rani, K. N. P., Kumar, T. P., Murthy, J. S. N., et al., 2010 : Equilibria, Kinetics, and Modeling of Extraction of Citric Acid from Aqueous Solutions with Alamine 336 in 1-Octanol, Sep. Sci. Technol., 45, pp.654-662.
- Thakre, N., Prajapati, A. K., Mahapatra, S. P., et al., 2016. Modeling and Optimization of Reactive Extraction of Citric Acid. J. Chem. Eng. Data, 61, pp.2614-2636.
- Bizek V., Horacek J., Kousova M., et al., 1993 : Amine extraction of citric acid: effect of diluent, Chem. Eng. Sci., 48, pp.1447-1457.
- Datta D., Asci Y. S., Tuyun A. F., et al., 2015a : Intensification of citric acid extraction by a mixture of trioctylamine and tridodecylamine in different diluents, J. Chem. Eng. Data, 60, pp.960-965.
- W. Takatsuji, H. Yoshida, 1997 : Adsorption of Organic Acids on Weakly Basic Ion Exchanger: Equilibria, J. Chem. Eng. Japan, 30(3), pp.396-405.
- Wennersten R., 1983 : The extraction of citric acid from fermentation broth using a solution of a tertiary amine, J. Chem. Technol. Biotechnol., 33, pp.85-94.
- Keshav A., Norge P., Wasewar K. L., 2012 : Reactive Extraction of Citric Acid Using Tri-n-octylamine in Nontoxic Natural Diluents : Part 1 - Equilibrium Studies from Aqueous Solutions, Appl. Biochem. Biotechnol., 167, pp.197-213.
- Liu L., Wei Q., Zhou Y., et al., 2020 : Using dialkyl amide via forming hydrophobic deep eutectic solvents to separate citric acid from fermentation broth, Green Chem., 22, pp.2526-2533.
- Rongjie L., Shenglong P., Haitao S., 2017 : Extracting and separating method for organic acid, CN107281778A.
- P. Gluszcz, T. Jamroz, B. Sencio, et al., 2004 : Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins, Bioprocess and Biosystems Engineering, 26, pp.185-190.
- M. Van den Bergh, B. Van de Voorde, D. De Vos, 2017 : Adsorption and Selective Recovery of Citric Acid with Poly(4-vinylpyridine), ChemSusChem, 10, pp.4864-4871.
- C. Jacinto, E. Ramos, D. Lopez, 2020 : Citric Acid Recovery from a Synthetic Fermentation Broth by Ion Exchange Resin, BISTUA Rev. FCB, 18(2), pp.9-14.
- Wu J., Oijun P., Wolfgang A., et al., 2009 : Model-based design of a pilot-scale simulated moving bed for purification of citric acid from fermentation broth, J. Chromatogr. A, 1216, pp.8793-8805.
- Delgado Dobladez J. A., Vincente ismael A. M., Dora Lucia U. S., et al., 2019 : Citric Acid Purification by Simulated Moving Bed Adsorption with Methanol as Desorbent, Sep. Sci. Technol., 54, pp.930-942.
- Wang J., Cui Z., Li Y., et al., 2020 : Techno-economic analysis and environmental impact assessment of citric acid production through different recovery methods, J. Clean. Prod., 249, 119315.
- Handojo L., Wardani A. K., Regina D., et al., 2019 : Electro-membrane processes for organic acid recovery, RSC Adv., 9, pp.7854-7869.
- Yeon-Chul Cho, Ki-Hun Kim, Jae-Woo Ahn, 2022 : Application of Electro-membrane for Regeneration of NaOH and H2SO4 from the Spent Na2SO4 Solutions in Metal Recovery Process, Resources Recycling, 31(5), pp.3-19.
- Jueun Lee, Hongil So, Yeonchul Cho, et al., 2019 : A Study on the Separation and Concentration of Li from Li-Containing Waste Solutions by Electrodialysis, Korean J. Met. Mater., 57(10), pp.656-662.
- Luigi Gurreri, Alessandro Tamburini, Andrea Cipollina, 2020 : Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery : A Systematic Review on Progress and Perspectives, Membranes, 10(7), pp.1-93.
- Novalic S., Jagschits F., Okwor J., et al., 1995 : Behaviour of citric acid during electrodialysis, J. Membrane Sci., 108, pp.201-205.
- R. Nikbakht, M. Sadrzadeh, T. Mohammadi, 2007 : Effect of operating parameters on concentration of citric acid using electrodialysis, Journal of Food Engineering, 83(4), pp. 596-604.
- A. Chandra, J. Ganesh Dattatreya Tadimeti, C. Sujay, 2018 : Transport hindrances with electrodialytic recovery of citric acid from solution of strong electrolytes, Chinese Journal of Chemical Engineering, 26(2), pp.278-292.
- Novalic S., James O., Klaus D. K., 1996 : The characteristics of citric acid separation using electrodialysis with bipolar membranes, Desalination, 105, pp.277-282.
- Novalic S., Kongbangkerd T., Klaus D. K., 2000 : Recovery of organic acids with high molecular weight using a combined electrodialytic process, J. Membr. Sci., 166, pp.99-104.
- P. Pinacci, M. Radaelli, 2002 : Recovery of citric acid from fermentation broths by electrodialysis with bipolar membranes, Desalination, 148, pp.177-179.
- Xu T., 2001 : Development of bipolar membrane-based processes, Desalination, 140, pp.247-258.
- Xu T., Weihua Y., 2002a : Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis, Journal of Membrane Science, 203(1-2), pp.145-153.
- Xu T., Weihua Y., 2002b : Citric acid production by electrodialysis with bipolar membranes, Chemical Engineering and Processing, 41, pp.519-524.
- B. Iglinski, S. Koter, R. Buczkowski, 2006 : Production of Citric Acid Using Electrodialysis with Bipolar Membrane of Sodium Citrate Solutions, Polish J. of Environ. Stud., 15(3), pp.411-417.
- C. Huang, T. Xu, Y. Zhang, et al., 2007 : Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, Journal of Membrane Science, 288, pp.1-12.
- Y. Wang, N. Zhang, C. Huang, et al., 2011 : Production of monoprotic, diprotic, and triprotic organic acids by using electrodialysis with bipolar membranes: Effect of cell configurations, J. Membr. Sci., 385-386, pp.226-233.
- Sun X., Lu H., Wang J., 2016 : Recovery of citric acid from fermented liquid by bipolar membrane electrodialysis, J. Clean. Prod., 143, pp.250-256.
- I. N Widiasa, P. D Sutrisna, I. G. Wenten, 2004 : Performance of a novel electrodeionization technique during citric acid recovery, Sep. Purif. Technol., 39, pp.89-97.
- K. Zhang, M. Wang, D. Wang, et al., 2009 : The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis, J. Membr. Sci., 341, pp.246-251.
- A. Rehouma, B. Belaissaoui, A. Hannachi, et al., 2013 : Bipolar membrane electrodialysis and ion exchange hybridizing for dilute organic acid solutions treatment, Desalination and Water Treatment, 51, pp.511-517.
- M. Jaouadi, J. Ding, A. Hannachi, et al., 2017 : IEX and BMED hybrid process for dilute organic acids recovery: identification of key steps to manage energy consumption, Desalination and Water Treatment, 69, pp.123-129.