DOI QR코드

DOI QR Code

GENERALIZED RICCI SOLITONS ON 3-DIMENSIONAL CONTACT METRIC MANIFOLDS

  • Pradip Majhi (Department of Pure Mathematics, University of Calcutta) ;
  • Raju Das (Department of Pure Mathematics, University of Calcutta)
  • 투고 : 2023.10.16
  • 심사 : 2024.07.24
  • 발행 : 2024.11.30

초록

In the present paper we study 3-dimensional contact metric manifolds with 𝜑Q = Q𝜑 admitting generalized Ricci solitons and generalized gradient Ricci solitons. It is proven that if a 3-dimensional contact metric manifold satisfying 𝜑Q = Q𝜑 admits a generalized Ricci soliton with non zero soliton vector field V being pointwise collinear with the characteristic vector field ξ, then the manifold is Sasakian. Also it is shown that if a 3-dimensional compact contact metric manifold with 𝜑Q = Q𝜑 admits a generalized gradient Ricci soliton then either the soliton is trivial or the manifold is flat or the scalar curvature is constant.

키워드

과제정보

The second author is financially supported by the council of scientific and industrial research, India (File no. 09/0028(11991)/2021-EMR-I). The authors are thankful to the Referee for his/her constructive suggestions in improving the paper.

참고문헌

  1. A. Ghosh: Ricci almost solitons and contact geometry. Adv. Geom 21 (2021), no. 2, 169-178. https://doi.org/10.1515/advgeom-2019-0026 
  2. A.H. Kumara & V. Venkatesha: Gradient Einstein-type contact metric manifolds. Commun. Korean Math. Soc. 35 (2020), no. 2, 639-651. https://doi.org/10.4134/CKMS.c190247 
  3. D. Dey & P. Majhi: Almost Kenmotsu metric as a conformal Ricci soliton. Conform. Geom. Dyn. 23 (2019), 105-116. https://doi.org/10.1090/ecgd/335 
  4. D.E. Blair, K. Themis & R. Sharma: A classification of 3-dimensional contact metric manifolds with Q𝜑 = 𝜑Q. Kodai Math. J. 13 (1990), no. 3, 391-401. https://doi.org/10.2996/kmj/1138039284 
  5. D.E. Blair: Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics. Birkhauser Boston, Ltd., Boston, MA (2010). 
  6. G. Kaimakamis & K. Panagiotidou: *-Ricci solitons of real hypersurface in non-flat complex space forms. J. Geom. Phy. 76 (2014), 408-413. https://doi.org/10.1016/j.geomphys.2014.09.004 
  7. K. Kenmotsu: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972) 93-103. https://doi.org/10.2748/tmj/1178241594 
  8. M.D. Siddiqi: Generalized Ricci Solitons on Trans-Sasakian Manifolds. Khayyam J. Math. 4 (2018), no. 2, 178-186. https://doi.org/10.22034/KJM.2018.63446 
  9. M.N. Devaraja, A.H. Kumara & V. Venkatesha: Riemann Soliton within the framework of contact geometry. Quaest. Math. 44 (2021), no. 5, 637-651. https://doi.org/10.2989/16073606.2020.1732495 
  10. P. Majhi, U.C. De & Y.J. Suh: ∗-Ricci solitons on Sasakian 3-manifolds. Publicationes Mathematicae 93 (2018), no. 1-2, 241-252. https://doi.org/10.5486/PMD.2018.8245 
  11. P. Nurowski & M. Randall: Generalized Ricci Solitons. The J. Geom. Ana. 26 (2016), 1280-1345). https://doi.org/10.1007/s12220-015-9592-8 
  12. S. Pigola, M. Rigoli, M. Rimoldi & A. Setti: Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), no. 4, 757-799. https://doi.org/10.2422/2036-2145.2011.4.01 
  13. S. Tachibana: On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 11 (1959) 247-265. 
  14. V. Venkatesha & A.H. Kumara: Quasi Yamabe solitons on 3-Dimensional Contact Metric Manifolds with Q𝜑 = 𝜑Q. Communications in Mathematics 30 (2022), no. 1, 191-199. https://doi.org/10.46298/cm.9695 
  15. W. Lin Feng: On noncompact quasi Yamabe gradient solitons. Differential Geom. Appl. 31 (2013), no. 3, 337-348. https://doi.org/10.1016/j.difgeo.2013.03.005 
  16. W. Yaning: Yamabe solitons on three-dimensional Kenmotsu manifolds. Bull. Belg. Math. Soc. Simon Stevin 23 (2016), no. 3, 345-355. https://doi.org/10.36045/bbms/1473186509 
  17. Y. Fei & Z. Liangdi: Geometry of gradient Yamabe solitons. Ann. Global Anal. Geom. 50 (2016), no. 4, 367-379. https://doi.org/10.1007/s10455-016-9516-2 
  18. Z. Huang, W. Lu & F. Su: The extended ouasi-Einstein manifolds with generalized Ricci solitons. arXiv:2209.11921v1 [math.DG]. https://doi.org/10.48550/arXiv.2209.11921