DOI QR코드

DOI QR Code

GENERALIZED CONTINUED FRACTION ALGORITHM FOR THE INDEX 3 SUBLATTICE

  • Dong Han Kim (Department of Mathematics Education, Dongguk University)
  • Received : 2024.07.29
  • Accepted : 2024.09.20
  • Published : 2024.11.30

Abstract

Motivated by an algorithm to generate all Pythagorean triples, Romik introduced a dynamical system on the unit circle, which corresponds the continued fraction algorithm on the index-2 sublattice. Cha et al. extended Romik's work to other ellipses and spheres and developed a dynamical system generating all Eisenstein triples. In this article, we review the dynamical systems by Romik and by Cha et al. and find connections to the continued fraction algorithms.

Keywords

Acknowledgement

Research supported by the National Research Foundation of Korea (RS-2023-00245719).

References

  1. B. Berggren: Pytagoreiska triangular. Tidskrift for elementar matematik, fysik och kemi 17 (1934), 129-139.
  2. Byungchul Cha, Heather Chapman, Brittany Gelb & Chooka Weiss: Lagrange spectrum of a circle over the Eisensteinian field. Monatsh. Math. 197 (2022), 1-55,
  3. Byungchul Cha & Dong Han Kim: Intrinsic Diophantine approximation on the unit circle and its Lagrange spectrum. Ann. Inst. Fourier (Grenoble) 73 (2023), 101-161,
  4. Byungchul Cha, Emily Nguyen & Brandon Tauber: Quadratic forms and their Berggren trees. J. Number Theory 185 (2018), 218-256,
  5. Shunji Ito: Algorithms with mediant convergents and their metrical theory. Osaka J. Math. 26 (1989), 557-578,
  6. Dong Han Kim, Seul Bee Lee & Lingmin Liao: Odd-odd continued fraction algorithm. Monatsh. Math. 198 (2022), 323-344,
  7. Dong Han Kim & Deokwon Sim: The Markoff and Lagrange spectra on the Hecke group H4. (2022), arXiv:2206.05441 [math.NT].
  8. Hans Gunther Kopetzky: Uber das Approximationsspektrum des Einheitskreises. Monatsh. Math. 100 (1985), 211-213,
  9. Cornelis Kraaikamp & Artur Lopes: The theta group and the continued fraction expansion with even partial quotients. Geom. Dedicata 59 (1996), 293-333.
  10. A.V. Malysev: Markoff and Lagrange spectra (a survey of the literature). Studies in number theory 4, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 67 (1977), 5-38.
  11. Dan Romik: The dynamics of Pythagorean triples. Trans. Amer. Math. Soc. 360 (2008), 6045-6064.
  12. Asmus L. Schmidt: Minimum of quadratic forms with respect to Fuchsian groups. I. J. Reine Angew. Math. 286/287 (1976), 341-368.
  13. Asmus L. Schmidt: Minimum of quadratic forms with respect to Fuchsian groups. II. J. Reine Angew. Math. 292 (1977), 109-114.
  14. Fritz Schweiger: Continued fractions with odd and even partial quotients. Arbeitsber. Math. Inst. Univ. Salzburg 4 (1982), 59-70.
  15. Caroline Series: The modular surface and continued fractions. J. London Math. Soc. 31 (1985), no. 2, 69-80.
  16. Ian Short & Mairi Walker: Even-integer continued fractions and the Farey tree. Springer Proc. Math. Stat. Vol. 159 Symmetries in graphs, maps, and polytopes Springer, (2016), 287-300.