DOI QR코드

DOI QR Code

PADOVAN AND LUCAS-PADOVAN QUATERNIONS

  • Gwangyeon Lee (Department of Mathematics, Hanseo University) ;
  • Kisoeb Park (Department of IT Convergence Software, Seoul Theological University)
  • Received : 2024.06.17
  • Accepted : 2024.08.26
  • Published : 2024.11.30

Abstract

In this paper, we introduce the Lucas-Padovan quaternions sequence. Initiating the studies based on the Padovan quaternion coefficients in relation to their recurrence, their matrix representation is then defined. We investigate various aspects of these quaternions, including summation formulas and binomial sums.

Keywords

Acknowledgement

This work was supported by the Seoul Theological University Research Fund of 2024 and the authors are grateful to the referees for their valuable comments and suggestions for improvement of the paper.

References

  1. S. Demir & M. Tanisli: Complex quaternionic reformulation of the relativistic elastic collision problem. Phys. Scr. 75 (2007), 630. https://doi.org/10.1088/0031-8949/75/5/007
  2. H. Gunay & N. Taskara: Some properties of Padovan quaternions. Asian-European Journal of Mathematics 12 (2019), Art. No. 2040017, 8 pages. https://doi.org/10.1142/S1793557120400173
  3. S. Halici: On complex Fibonacci quaternions. Adv. Appl. Clifford Algebras 23 (2013), 105-112. https://doi.org/10.1007/s00006-012-0337-5
  4. S. Halici & O. Deveci: On Fibonacci quaternions matrix. Notes on Number Theory and Discrete Mathematics 27 (2021), 236-244. https://doi.org/10.7546/nntdm.2021.27.4.236-244
  5. Z. Isbilir & N. Gurses: Pell-Padovan generalized quaternions. Notes on Number Theory and Discrete Mathematics 27 (2021), 171-187. https://doi.org/10.7546/nntdm.2021.27.1.171-187
  6. K. Lan & Y.H. Xia: Linear quaternion differential equations: basic theory and fundamental results. Studies in Applied Mathematics 141 (2018), 3-45. https://doi.org/10.1111/sapm.12211
  7. M. Startek, A. WÃloch & I. WÃloch: Fibonacci numbers and Lucas numbers in graphs. Discrete Appl. Math. 157 (2009), 864-868. https://doi.org/10.1016/j.dam.2008.08.028
  8. S. Stevic: Representation of solitions if bilinear difference quations in terms of generalized fibonacci sequences. Electron. J. Qual. Theory Differ. Equ. 67 (2014), 1-15. https://doi.org/10.14232/ejqtde.2014.1.67
  9. A. Szynal-Liana & I. WÃloch: The Pell quaternions and the Pell Octonions. Adv. Appl. Clifford Algebras 26 (2016), 435-440. https://doi.org/10.1007/s00006-015-0570-9
  10. A. Szynal-Liana & I. WÃloch: A note on Jacobsthal quaterninos. Adv. Appl. Clifford Algebras 26 (2016), 441-447. https://doi.org/10.1007/s00006-015-0622-1
  11. D. Tasci: Padovan and Pell-Padovan quaternions. Journal of Science and Arts 42 (2018), 125-132.
  12. U. Toke,ser, T. Mert, Z. Unal & G. Bilgici: On Pell and Pell-Lucas generalized octonions. Turkish Journal of Mathematics and Computer Science 13 (2021), 226-233. https://doi.org/10.47000/tjmcs.780474
  13. S. Yuce & F.T. Aydin: Generalized Dual Fibnacci quaternions. Applied Mathematics E-notes 16 (2016), 276-289.