DOI QR코드

DOI QR Code

INNOVATION FIXED POINT OF COMPARISON AND WEAKLY CONTRACTIVE FUNCTION

  • 투고 : 2024.06.14
  • 심사 : 2024.09.02
  • 발행 : 2024.11.30

초록

We prove some new fixed point theorems in class of generalized metric with using comparison functions and almost generalized weakly contractive mappings. Finally, we give an example to illustrate our main results.

키워드

참고문헌

  1. I.A. Bakhtin: The contraction principle in quasimetric spaces. Funkts. Anal. 30 (1989) (in Russian), 26-37. https//doi.org/19.12691/tjant,6-2-2
  2. A. Branciari: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. 57 (2000), 31-37. https//doi.org/10.5486/PMD. 2000.2133
  3. S. Czerwik: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1 (1993), 5-11. https//doi.org/10.1007/BF01304884
  4. S. Czerwik: Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 46 (1998), 263-276. https//doi.org/10.37394,23206.2021.20.32 https://doi.org/10.37394,23206.2021.20.32
  5. Z. Kadelburg & S. Radenovi'c: Fixed point results in generalized metric spaces without Hausdorff property. Math. Sci. 8 (2014), 125. https//doi.org/10.100711540096-914-0125-6 https://doi.org/10.100711540096-914-0125-6
  6. Z. Kadelburg & S. Radenovi'c: On generalized metric spaces: a survey. TWMS J. Pure Appl. Math. 5 (2014), no. 1, 3-13. https//doi.org/10.1007/s11784-015-0232-5
  7. M.S. Khan, M. Swaleh & S. Sessa: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30 (1984), 1-9. https//doi.org/10.1917/50004972700001659
  8. W. Kirk & N. Shahzad: Fixed Point Theory in Distance Spaces. Springer. (2014). https//doi.org/10.1007/978-3-319-10927-5
  9. B. Samet: Discussion on A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publ. Math. 76 (2010), 493-494. https//doi.org/10.54861 PMD.2000.2133 https://doi.org/10.54861PMD.2000.2133
  10. I.R. Sarma, J.M. Rao & S.S. Rao: Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2 (2009), no. 3, 180-182. https//doi.org/10.22436/ jnsa0002003006
  11. T. Suzuki: Generalized metric spaces do not have the compatible topology. Appl. Anal. (2014), 458098. https//doi.org/10.1155/2014/458028