DOI QR코드

DOI QR Code

Evaluation of Acute Oral Toxicities from Paralytic Shellfish Toxins Based on a Three-level Response Surface Pathway Design

  • Se Yong Park (College of Veterinary Medicine, Seoul National University) ;
  • Jung Ho Hwang (College of Pharmacy, Gachon University) ;
  • Ju-Hee Kang (College of Veterinary Medicine, Seoul National University) ;
  • Hyang Sook Chun (School of Food Science and Technology, Chung-Ang University) ;
  • Seung Hyun Oh (College of Veterinary Medicine, Seoul National University)
  • Received : 2024.09.19
  • Accepted : 2024.10.21
  • Published : 2024.10.30

Abstract

Paralytic Shellfish Poisoning (PSP) occurs when humans consume shellfish contaminated with saxitoxin (STX) and its derivatives. It causes symptoms ranging from numbness and nausea to severe muscle paralysis and respiratory failure. Toxic equivalency factors (TEFs) are used to standardize the toxic effects of various PSP toxins for risk assessment. Traditional detection methods, such as mouse bioassays, have been used to set the TEFs, but ethical concerns over in vivo studies have shifted the focus toward analytical methods, such as high-performance liquid chromatography. However, in vivo data are essential for establishing TEFs, particularly for emerging marine biotoxins. This study employed a three-level response surface pathway (RSP) design, which reduced the number of animals used to evaluate the median lethal dose (LD50) of STX and its derivatives. The LD50 and TEF values for STX dihydrochloride, neosaxitoxin, decarbamoylsaxitoxin, gonyautoxins 1 & 4 (GTX1&4), GTX2&3, and dcGTX2&3 were 451.3 (1.00), 306.5 (1.47), 860.9 (0.52), 644.5 (0.70), 915.3 (0.49), and 2409.3 (0.19) ㎍/kg, respectively. These TEFs closely aligned with the WHO recommendations and prior oral LD50 values, with Pearson correlation coefficients of 0.969 and 0.994, respectively. This study highlights the need for accurate TEF assignments for PSP toxins and new marine biotoxins, demonstrating that the three-level RSP design balances ethical concerns and provides reliable toxicity data.

마비성 패류독소 중독증(paralytic shellfish poisoning; PSP)은 삭시톡신과 그 유사체로 오염된 패류를 섭취했을 때 발생하며, 저림, 구토 등의 증상에서부터 근육 마비와 심각한 경우 호흡 마비로 이어져 사망에 이를 수 있다. 독성등가계수(toxic equivalency factors; TEFs)는 다양한 마비성 패류독소의 독성을 표준화하여 위험성을 평가하는데 사용된다. 마비성 패류독소를 검출하기 위해 사용되던 마우스 생체 실험(mouse bioassay; MBA)에 대한 윤리적 문제가 제기되면서 고성능액체크로마토그래피와 같은 기기 분석법으로의 전환이 시도되고 있지만, 유사체들의 적절한 TEF를 설정하기 위해서는 여전히 동물 모델을 통한 생체 내 독성 데이터가 필수적이다. 본 연구에서는 동물 수를 줄이면서도 신뢰할 수 있는 경구투여 독성 결과를 얻기 위해 삼단계 반응표면-경로 (three-level RSP) 설계를 사용했다. 인증 표준 물질을 이용하여 각 독소의 초기 용량과 조정 계수를 결정하고 시험을 진행했으며, STX.2HCl, NeoSTX, dcSTX, GTX1&4, GTX2&3, dcGTX2&3의 반수치사량 (및 TEF) 값은 각각 451.3 (1.00), 306.5 (1.47), 860.9 (0.52), 644.5 (0.70), 915.3 (0.49), 2409.3 (0.19)로 나타났다. 도출된 TEF 값은 2016년 WHO에서 권고한 TEF 값뿐만아니라, 이전에 보고된 경구 투여 반수치사량을 기반으로 한 TEF 값과 강한 상관관계를 보였다. 본 연구는 마비성 패류독소 뿐만 아니라 신규 미관리 해양생물독소에 대해 적절한 TEF를 설정하는 데 있어 삼단계 반응표면경로 설계를 윤리적 우려와 신뢰할 수 있는 독성 데이터의 필요성 사이에서 효과적으로 균형을 맞출 수 있는 방법으로 제안한다.

Keywords

Acknowledgement

This work was supported by the Ministry of Food and Drug Safety (grant number 20163MFDS641) and the Bio and Medical Technology Development Program of the National Research Foundation and the Korean government MIST (2021M3H9A1097551).

References

  1. Etheridge, S.M., Paralytic shellfish poisoning: seafood safety and human health perspectives. Toxicon, 56, 108-122 (2010).
  2. Wiese, M., D'Agostino, P.M., Mihali, T.K., Moffitt, M.C., Neilan, B.A., Neurotoxic alkaloids: saxitoxin and its analogs. Mar. Drugs, 8, 2185-2211 (2010).
  3. Nguyen, H.N., Smith, M.E., Swoboda, H.D., 2024. Shellfish Toxicity, StatPearls, Treasure Island (FL).
  4. Isbister, G.K., Kiernan, M.C., Neurotoxic marine poisoning. Lancet Neurol. 4, 219-228 (2005).
  5. Sobel, J., Painter, J., Illnesses caused by marine toxins. Clin. Infect. Dis., 41, 1290-1296 (2005).
  6. Lee, S.Y., Im, J.H., Woo, S.Y., Choi, H.Y., Park, S.B., Yoo, C.N., Chun, H.S., Saxitoxin and its analogues: toxicity, analytical method, occurrence and safety management. J. Food. Hyg. Saf., 35, 521-534 (2020).
  7. Botana, L.M., Hess, P., Munday, R., Nathalie, A., DeGrasse, S.L., Feeley, M., Suzuki, T., van den Berg, M., Fattori, V., Garrido Gamarro, E., Tritscher, A., Nakagawa, R., Karunasagar, I., Derivation of toxicity equivalency factors for marine biotoxins associated with Bivalve Molluscs. Trends Food Sci. Technol., 59, 15-24 (2017).
  8. Morse, E.V., Paralytic shellfish poisoning: a review. J. Am. Vet. Med. Assoc., 171, 1178-1180 (1977).
  9. World Health Organization (WHO), 2016. Toxicity equivalence factors for marine biotoxins associated with bivalve molluscs, WHO, Geneva, Switzerland, pp. 30-38.
  10. Codex Alimentarius, (2024, October 21). Standard for live and raw bivalve molluscs, CXS 292-2008. Retrieved from https://www.fao.org/fao-who-codexalimentarius/codex-texts/liststandards/en/
  11. European-Food-Safety-Authority, Marine Biotoxins in Shellfish-Saxitoxin Group. EFSA J., 7, 1019 (2009).
  12. Visciano, P., Schirone, M., Berti, M., Milandri, A., Tofalo, R., Suzzi, G., Marine biotoxins: occurrence, toxicity, regulatory limits and reference methods. Front. Microbiol., 7, 1051 (2016).
  13. EUR-Lex, (2024, October 21). Regulation(EC), No 853/2004 of the European parliament and of the council. Retrieved from https://eur-lex.europa.eu/homepage.html?lang=en
  14. Hatfield, R.G., Punn, R., Algoet, M., Turner, A.D., A rapid method for the analysis of paralytic shellfish toxins utilizing standard pressure HPLC: refinement of AOAC 2005.06. J. AOAC Int., 99, 475-480 (2016).
  15. Hashimoto, T., Nishio, S., Nishibori, N., Yoshioka, S., Noguchi, T., A new analytical method for gonyautoxins based on postcolumn HPLC. Shokuhin Eiseigaku Zasshi, 43, 144-147 (2002).
  16. Ben-Gigirey, B., Rodriguez-Velasco, M.L., Otero, A., Vieites, J.M., Cabado, A.G., A comparative study for PSP toxins quantification by using MBA and HPLC official methods in shellfish. Toxicon, 60, 864-873 (2012).
  17. Russell, W.M.S., Burch, R.L., 1959. The principles of humane experimental technique, Methuen London, NY, UK, pp. 252.
  18. Tannenbaum, J., Bennett, B.T., Russell and Burch's 3Rs then and now: the need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci., 54, 120-132 (2015).
  19. Dewi, S., Aune, T., Bunaes, J.A., Smith, A.J., Larsen, S., The development of response surface pathway design to reduce animal numbers in toxicity studies. BMC Pharmacol. Toxicol., 15, 18 (2014).
  20. Park, S.Y., Kang, J.H., Jung, H.J., Hwang, J.H., Chun, H.S., Yoon, Y.S., Oh, S.H., Okadaic acid is at least as toxic as dinophysistoxin-1 after repeated administration to mice by gavage. Toxins (Basel), 15, 587 (2023).
  21. Dobson, A.J., Barnett, A.G., 2018. An Introduction to Generalized Linear Models, 4th ed. CRC Press, New York, NY, USA, pp. 149-158.
  22. Llewellyn, L.E., Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep., 23, 200-222 (2006).
  23. Finch, S.C., Boundy, M.J., Harwood, D.T., The acute toxicity of tetrodotoxin and tetrodotoxin(-)saxitoxin mixtures to mice by various routes of administration. Toxins (Basel), 10, 423 (2018).
  24. Munday, R., Thomas, K., Gibbs, R., Murphy, C., Quilliam, M.A., Acute toxicities of saxitoxin, neosaxitoxin, decarbamoyl saxitoxin and gonyautoxins 1&4 and 2&3 to mice by various routes of administration. Toxicon, 76, 77-83 (2013).
  25. Stonik, V.A., Stonik, I.V., 2016. Toxins produced by marine microorganisms: a short review, marine and freshwater toxins, Springer, Dordrecht, Netherlands, pp. 3-21.
  26. Selwood, A.I., Waugh, C., Harwood, D.T., Rhodes, L.L., Reeve, J., Sim, J., Munday, R., Acute toxicities of the saxitoxin congeners gonyautoxin 5, gonyautoxin 6, decarbamoyl gonyautoxin 2&3, decarbamoyl neosaxitoxin, C-1&2 and C3&4 to mice by various routes of administration. Toxins (Basel), 9, 73 (2017).
  27. Suzuki, H., Machii, K., Comparison of toxicity between saxitoxin and decarbamoyl saxitoxin in the mouse bioassay for paralytic shellfish poisoning toxins. J. Vet. Med. Sci., 76, 1523-1525 (2014).
  28. Hubrecht, R.C., Carter, E., The 3Rs and humane experimental technique: implementing change. Animals (Basel), 9, 754 (2019).
  29. Watanabe, R., Harada, T., Matsushima, R., Oikawa, H., Oshima, Y., Kaneniwa, M., Suzuki, T., Indirect quantitation of saxitoxin by HPLC with post-column oxidation and fluorometric detection. Anal Sci., 30, 931-936 (2014).
  30. Zhang, Y., Qu J., Du, W., Wu, M., Liu, L., Molecularly imprinted polymer solid phase extraction coupled with liquid chromatography-high resolution mass spectrometry for the detection of gonyautoxins 2&3 in seawater. Mar. Pollut. Bull. 157, 111333 (2020).
  31. Louppis, A.P., Badeka, A.V., Katikou, P., Paleologos, E.K., Kontominas, M.G., Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay. Toxicon, 55, 724-733 (2010).
  32. Organization for Economic Cooperation and Development (OECD), 2022. Test No. 425: Acute oral toxicity: up-and-down procedure, OECD Publishing, Paris, France, pp. 1-12.
  33. O'Mahony M., EU regulatory risk management of marine biotoxins in the marine bivalve mollusc food-chain. Toxins, 10, 118 (2018).
  34. Martinez, A., Garrido-Maestu, A., Ben-Gigirey, B., Chapela, M.J., Gonzalez, V., Vieites, J.M., Cabado, A.G., 2015. Marine biotoxins, Springer Handbook of Marine Biotechnology, Springer, Berlin, Germany, pp. 869-904.