DOI QR코드

DOI QR Code

설계·시공 단계의 불확실성 요인들이 철근콘크리트 구조물 구조성능에 미치는 영향

Effects of Uncertainty Parameters Occurring in the Design and Construction Process on RC Structural Performance

  • 신동현 (부산대학교 건축공학과) ;
  • 이주형 (부산대학교 건축공학과) ;
  • 성준현 (부산대학교 건축공학과) ;
  • 윤수호 (부산대학교 건축공학과)
  • Shin, Dong-Hyeon (Department of Architectural Engineering, Pusan National University) ;
  • Lee, Ju-Hyeong (Department of Architectural Engineering, Pusan National University) ;
  • Sung, Jun-Hyun (Department of Architectural Engineering, Pusan National University) ;
  • Yoon, Su-Ho (Department of Architectural Engineering, Pusan National University)
  • 투고 : 2024.08.14
  • 심사 : 2024.09.03
  • 발행 : 2024.11.01

초록

This research introduces a novel probabilistic approach to consider the effects of uncertainty parameters during the design and construction process, providing a fresh perspective on the evaluation of the structural performance of reinforced concrete structures. The study, which categorized various random design and construction process variables into three groups, selected a two-story reinforced concrete frame as a prototype and evaluated it using a nonlinear analytical model. The effects of the uncertainty propagations to seismic responses of the prototype RC frame were probabilistically evaluated using non-linear dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. The derivation of seismic fragility curves of the RC frame from the probabilistic distributions as the results of uncertainty-propagation and the verification of whether the RC frame can meet the seismic performance objective from a probabilistic point of view represent a novel and significant contribution to the field of structural engineering.

키워드

과제정보

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다.

참고문헌

  1. Shinozuka M. Proababilistic modelling of concrete structures. Journal of Engineering Mechanics Division, ASCE. 1972;98(6): 1433-1451.
  2. Grant LH, Mirza SA, MacGregor JG. Monte Carlo study of strength of concrete columns. ACI Journal. 1978;75(8):348-358.
  3. Mirza SA, MacGregor JG. Slenderness and strength reliability of reinforced concrete columns. ACI Structural Journal. 1989;86(4): 428-438.
  4. Frangopol DM, Spacone E, Iwaki I. A new look at reliability of reinforced concrete columns. Structrural Safety. 1996;18(2): 123-150.
  5. Chryssanthopoulos MK, Dymiotis C, Kappos A J. Probabilistic evaluation of behavior factors in EC8-designed R/C frame. J Eng Str. 2000;22:1028-1041.
  6. Ghobarah A , A ly NM. Seismic reliability assessment of existing reinforced concrete buildings. J Earthquake Eng. 1998;2(4):569-592.
  7. Porter KA, Beck JL, Shaikhutdinov RV. Sensitivity of building loss estimates to major uncertain variables. Earthquake Spectra. 2002; 18(4):719-743.
  8. Baker JW, Cornell CA. Uncertainty specification and propagation for loss estimation using FOSM methods. In Der Kiureghian, Madanat, and Pestana, editors. Proc. of Ninth Int. Conf. on Applications of Statistics and Probability in Civil Eng., ICASP9, San Francisco, California, USA; 2003 Jul 6-9; Roteerdam, Millpress, p. 973-980; c2003.
  9. Lee TH, Mosalam KM. Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method. Earthquake Engineering and Structural Dynamics. 2005;34(14):1719-1736.
  10. Lee TH, Mosalam KM. Identifying significany components of structures for seismic performance using fosm method. J Earthq Eng Soc Korea. 2009;13(4):37-45.
  11. Shin DH, Kim HJ. Probabilistic assessment of structural seismic performance influenced by the chracracteristics of hysteretic energy dissipating device. Int J Steel Struct. 2014;14(4):697-710.
  12. Shin DH, Wang Wj, Kim HJ. Comparative evaluation of probability uncertainty-propagation to seismic collapse capacity of low-rise steel moment-resisting frames. Int J Steel Struct. 2016;16(3):887-900.
  13. Shin DH, Kim HJ. Influential properties of hysteretic energy dissipating devices on collapse capacities of frames. J Constr Steel Res. 2016;123:93-105.
  14. Shin DH, Kim HJ. Uncertainties influencing the collapse capacity of steel moment-resisting frame. J Comput Struct Eng Inst Korea. 2015;28(4):351-359.
  15. Iman RL, Conover WJ. A distribution-free approach to including rank correlation among input variables. Communication in Statistics Part B: Simul & Comput. 1982;11(3):311-334.
  16. Ellingwood B, Galambos TV, MacGregor JG. Development of a Probability-based Load Criteria for American National Standard A58. Washington DC; c1980.
  17. Kwon SA. Improvement and standardization of construction specifications and design criteria based on performance. Korea Institute of Construction Technology; c2011.
  18. Yoon SC, Jee NY, Choi KB. Field survey on the construction errors for the members of reinforced concrete structures. Journal of the Korea Institute for Structural Maintenance and Inspection. 2010; 14(3):201-208.
  19. Evans S, Rob L, Philip S. Modeling a whole building stock: domestic, non-domestic and mixed use. Building Research & Information. 2019;47(2);156-172.
  20. Tube EA, Bekir OA, Sinan A. A statistical study on geometrical properties of Turkish reinforced concrete building stock. 2nd Eurepean Conference on Earthquake Engineering and Seismology. Instanbul Turkey; c2014.
  21. Moon JG. A study on the covering depth of reinforcing steel bars in the basement floor of apartment buildings, Ms dissertation. Busan: Pukyong National University; c2002. 89 p.
  22. Dehghani H, Fadaee MJ. Probabilistic assessment of torsion in concrete beams externally strengthened with CFRP composites. Mater Struct. 2014;47(5):885-894.
  23. Lee CS. Differences in housing tenureship by the characteristics of household heads. Journal of the Architectural Institute of Korea. 2007;23(2):119-127.
  24. Jung JS, Kim KH, Lee KS. Seismic performance of two-story RC frame retrofitted using external steel frame equipped with length-adjustment device by pseudodynamic test. J Earthquake Eng. 2022;26(12):6102-6128.
  25. Carr AJ. Ruaumoko Manual: User Manual for the 2-Dimensional Version-Ruaumoko 2D Vol. 2, New Zealand: University of Canterbury; c2009. 97 p.
  26. Yang J, Xia Y, Lei X, Sun L. Hysteretic parameters identification of RC frame structure with Takeda model based on modified CKF method. Bulletin of Earthquake Engineering. 2022;20:4673-4696.
  27. American Society of Civil Engineer. Seismic Evaluation and Retrofit of Existing Buildings. ASCE/SEI 41-17. Virginia. USA; c2017.
  28. Pacific Earthquake Engineering Researh Center [Internet]. USA: University of California. Berkeley; PEER NGA Databse; 1 April 2024; Available from: http://peer.berkeley.edu/nga/.
  29. Applied Technology Council. Seismic Performance Assessment of Buildings, FEMA P-58. Federal Emergency Management Agency. USA; c2018.
  30. Ministry of Land, Infrastructure and Transport. Seismic Building Design Code, KDS 41 17 00. Korea; c2022.
  31. American Society of Civil Engineer. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-10. Virginia. USA; c2010.