DOI QR코드

DOI QR Code

Pore Characterization Methods for Microporous Membranes

미세다공성 분리막의 기공특성 분석법

  • Inho Park (Department of Energy Engineering, Hanyang University) ;
  • Jun Hyeok Kang (Department of Energy Engineering, Hanyang University) ;
  • Ho Bum Park (Department of Energy Engineering, Hanyang University)
  • 박인호 (한양대학교 에너지공학과) ;
  • 강준혁 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2024.10.10
  • Accepted : 2024.10.18
  • Published : 2024.10.30

Abstract

Selecting an appropriate membrane for a given application is essential. In microporous membranes, the separation mechanism relies on size exclusion, meaning that the pore size determines which substances can permeate. Therefore, pore characterization techniques are employed beforehand to identify the most suitable material. However, pore geometry and tortuosity are typically random within the membrane matrix. This paper reviews indirect methods for characterizing pore size distribution, utilizing three key equations-the Young-Laplace, Kelvin, and Gibbs-Thomson equations-to account for the random nature of the pores.

분리막 공정 설계에 있어 응용 분야에 적합한 막 소재 및 물성 선택은 중요하다. 특히 다공성 막의 경우, 분리 메커니즘이 투과 종 크기에 따라 선별되는 원리에 기반함에 따라 기공 크기와 같은 기공 특성을 확인하는 막 소재 스크리닝이 우선되어야 한다. 하지만 일반적으로 분리막 매질 내의 기공들은 불균일하게 형성된다. 본 논문에서는 이러한 불균일성을 정규화한 기공 크기 분포도 분석 기법들에 대해 중점적으로 다루고 각 기법들이 기반한 Young-Laplace, Kelvin 그리고 Gibbs-Thomson 식에 대해 소개하고자 한다.

Keywords

Acknowledgement

This work was supported by the Materials & Components Technology Development Program (Project number: 20011497) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

References

  1. G. Owen, M. Bandi, J. A. Howell, and S. J. Churchouse, "Economic assessment of membrane processes for water and wastewater treatment", J. Membr. Sci., 102, 77-91 (1995).
  2. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101-111 (2013).
  3. R. W. Baker, "Membrane technology and applications", John Wiley & Sons, Chichester, West Sussex (2012).
  4. E. M. Renkin, "Filtration, diffusion, and molecular sieving through porous cellulose membranes", J. Gen. Physiol., 38, 225 (1954).
  5. R. W. Baker and H. Strathmann, "Ultrafiltration of macromolecular solutions with high-flux membranes", J. Appl. Polym. Sci., 14, 1197-1214 (1970).
  6. R. Singh, "Hybrid membrane systems for water purification: Technology, systems design and operations", Elsevier, Amsterdam, The Netherlands (2006).
  7. I. Park, J. H. Kang, Y. Ha, J. Lee, and H. B. Park, "Hydrothermally rearranged cellulose membranes for controlled size sieving", J. Membr. Sci., 173, 123367 (2025).
  8. J. I. Calvo, A. Bottino, G. Capannelli, and A. Hernandez, "Comparison of liquid-liquid displacement porosimetry and scanning electron microscopy image analysis to characterise ultrafiltration track-etched membranes", J. Membr. Sci., 239, 189-197 (2004).
  9. R. Ziel, A. Haus, and A. Tulke, "Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis", J. Membr. Sci., 323, 241-246 (2008).
  10. N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, "Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of polyethersulfone UF membranes with dopes containing different PVP", J. Membr. Sci., 187, 227-237 (2001).
  11. G. Reichelt, "Bubble point measurements on large areas of microporous membranes", J. Membr. Sci., 60, 253-259 (1991).
  12. E. Jakobs and W. Koros, "Ceramic membrane characterization via the bubble point technique", J. Membr. Sci., 124, 149-159 (1997).
  13. D. Hopkinson, M. Zeh, and D. Luebke, "The bubble point of supported ionic liquid membranes using flat sheet supports", J. Membr. Sci., 468, 155-162 (2014).
  14. H. Bechhold, "Durchlassigkeit von ultrafiltern", Z. Phys. Chem., 64, 328-342 (1908).
  15. A. Hernandez, J. Calvo, P. Pradanos, and F. Tejerina, "Pore size distributions in microp- orous membranes. A critical analysis of the bubble point extended method", J. Membr. Sci., 112, 1-12 (1996).
  16. R. I. Peinador, J. I. Calvo, and R. Ben Aim, "Comparison of capillary flow porometry (CFP) and liquid extrusion porometry (LEP) techniques for the characterization of porous and face mask membranes", Appl. Sci., 10, 5703 (2020).
  17. P. Shao, R. Huang, X. Feng, and W. Anderson, "Gas-liquid displacement method for estimating membrane pore-size distributions", AIChE J., 50, 557-565 (2004).
  18. R. I. Peinador, O. Abba, and J. I. Calvo, "Characterization of commercial gas diffusion layers (GDL) by liquid extrusion porometry (LEP) and gas liquid displacement porometry (GLDP)", Membranes, 12, 212 (2022).
  19. R. Mourhatch, T. T. Tsotsis, and M. Sahimi, "Determination of the true pore size distribution by flow permporometry experiments: an invasion percolation model", J. Membr. Sci., 367, 55-62 (2011).
  20. D. Li, M. W. Frey, and Y. L. Joo, "Characterization of nanofibrous membranes with capillary flow porometry", J. Membr. Sci., 286, 104-114 (2006).
  21. H. Kolb, R. Schmitt, A. Dittler, and G. Kasper, "On the accuracy of capillary flow porometry for fibrous filter media", Sep. Purif. Technol., 199, 198-205 (2018).
  22. D. Dollimore and G. Heal, "An improved method for the calculation of pore size distribution from adsorption data", J. Appl. Chem., 14, 109-114 (1964).
  23. R. I. Peinador, J. I. Calvo, P. Pradanos, L. Palacio, and A. Hernandez, "Characterisation of polymeric UF membranes by liquid-liquid displacement porosimetry", J. Membr. Sci., 348, 238-244 (2010).
  24. G. Capannelli, F. Vigo, and S. Munari, "Ultrafiltration membranes-characterization methods", J. Membr. Sci., 15, 289-313 (1983).
  25. S Munari, A. Bottino, G. Capannelli, and P. Moretti, "Membrane morphology and transport properties", Desalination, 53, 11-23 (1985).
  26. M. B. Tanis-Kanbur, R. I. Peinador, X. Hu, J. I. Calvo, and J. W. Chew, "Membrane characterization via evapoporometry (EP) and liquid-liquid displacement porosimetry (LLDP) techniques", J. Membr. Sci., 586, 248-258 (2019).
  27. P. Grabar and S. Nikitine, "Sur le diametre des pores des membranes en collodion utilisees en ultrafiltration", J. Chim. Phys., 33, 721-741 (1936).
  28. J. I. Calvo, R. I. Peinador, P. Pradanos, L. Palacio, A. Bottino, G. Capannelli, and A. Hernandez, "Liquid-liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes", Desalination, 268, 174-181 (2011).
  29. L. Germic, K. Ebert, R. Bouma, Z. Borneman, M. Mulder, and H. Strathmann, "Characterization of polyacrylonitrile ultrafiltration membranes", J. Membr. Sci., 132, 131-145 (1997).
  30. S. M. Snyder, K. D. Cole, and D. C. Szlag, "Phase compositions, viscosities, and densities for aqueous two-phase systems composed of polyethylene glycol and various salts at 25. degree. C", J. Chem. Eng. Data., 37, 268-274 (1992).
  31. M. W. Phillips and A. J. DiLeo, "A validatible porosimetric technique for verifying the integrity of virus-retentive membranes", Biologicals., 24, 243-253 (1996).
  32. S. Giglia, D. Bohonak, P. Greenhalgh, and A. Leahy, "Measurement of pore size distribution and prediction of membrane filter virus retention using liquid-liquid porometry", J. Membr. Sci., 476, 399-409 (2015).
  33. P. Carretero, S. Molina, A. Lozano, J. de Abajo, J. I. Calvo, P. Pradanos, L. Palacio, and A. Hernandez, "Liquid-liquid displacement porosimetry applied to several MF and UF membranes", Desalination, 327, 14-23 (2013).
  34. F. P. Cuperus, D. Bargeman, and C. A. Smolders, "Permporometry: The determination of the size distribution of active pores in UF membranes", J. Membr. Sci., 71, 57-67 (1992).
  35. T. Tsuru, Y. Takata, H. Kondo, F. Hirano, T. Yoshioka, and M. Asaeda, "Characterization of sol-gel derived membranes and zeolite membranes by nanopermporometry", Sep. Purif. Technol., 32, 23-27 (2003).
  36. G. Cao, J. Meijernik, H. Brinkman, and A. Burggraaf, "Permporometry study on the size distribution of active pores in porous ceramic membranes", J. Membr. Sci., 83, 221-235 (1993).
  37. T. Tsuru, T. Hino, T. Yoshioka, and M. Asaeda, "Permporometry characterization of microporous ceramic membranes", J. Membr. Sci., 186, 257-265 (2001).
  38. P. Huang, N. Xu, J. Shi, and Y. Lin, "Characterization of asymmetric ceramic membranes by modified permporometry", J. Membr. Sci., 116, 301-305 (1996).
  39. A. Simon, H. Richter, B. Reif, M. Schuelein, D. Sanwald, and W. Schwieger, "Evaluation of a method for micro-defect sealing in ZSM-5 zeolite membranes by chemical vapor deposition of carbon", Sep. Purif. Technol., 219, 180-185 (2019).
  40. S. Blumenschein, A. Bocking, U. Katzel, S. Postel, and M. Wessling, "Rejection modeling of ceramic membranes in organic solvent nanofiltration", J. Membr. Sci., 510, 191-200 (2016).
  41. S. Zeidler, P. Puhlfurss, U. Katzel, and U. I. Voigt, "Preparation and characterization of new low MWCO ceramic nanofiltration membranes for organic solvents", J. Membr. Sci., 470, 421-430 (2014).
  42. D. Korelskiy, M. Grahn, J. Mouzon, and J. Hedlund, "Characterization of flow-through micropores in MFI membranes by permporometry", J. Membr. Sci., 417, 183-192 (2012).
  43. A. K. Basumatary, R. V. Kumar, A. K. Ghoshal, and G. Pugazhenthi, "Synthesis and characterization of MCM-41-ceramic composite membrane for the separation of chromic acid from aqueous solution", J. Membr. Sci., 475, 521-532 (2015).
  44. W. Oh and J-W. Park, "Facile synthesis of robust and pore-size-tunable nanoporous covalent framework membrane by simultaneous gelation and phase separation of covalent network/poly (methyl methacrylate) mixture", ACS Appl. Mater. Interfaces., 11, 32398-32407 (2019).
  45. Z. Ashrafi, L. Lucia, and W. Krause, "Bioengineering tunable porosity in bacterial nanocellulose matrices", Soft Matter, 15, 9359-9367 (2019).
  46. P. Pradanos, M. L. Rodriguez, J. Calvo, A. Hernandez, F. Tejerina, and J. De Saja, "Structural characterization of an UF membrane by gas adsorption-desorption and AFM measurements", J. Membr. Sci., 117, 291-302 (1996).
  47. K. Kaneko, "Determination of pore size and pore size distribution: 1. Adsorbents and catalysts", J. Membr. Sci., 96, 59-89 (1994).
  48. F. Cuperus and C. Smolders, "Characterization of UF membranes: Membrane characteristics and characterization techniques", Adv. Colloid Interface Sci., 34, 135-173 (1991).
  49. W. B. Krantz, A. R. Greenberg, E. Kujundzic, A Yeo, and S. S. Hosseini, "Evapoporometry: A novel technique for determining the pore-size distribution of membranes", J. Membr. Sci., 438, 153-166 (2013).
  50. E. Akhondi, F. Wicaksana, W. B. Krantz, and A. G. Fane, "Evapoporometry determination of pore-size distribution and pore fouling of hollow fiber membranes", J. Membr. Sci., 470, 334-345 (2014).
  51. F. Zamani, P. Jayaraman, E. Akhondi, W. B. Krantz, A. G. Fane, and J. W. Chew, "Extending the uppermost pore diameter measureable via Evapoporometry", J. Membr. Sci., 524, 637-643 (2017).
  52. M. B. Tanis-Kanbur, F. Zamani, W. B. Krantz, X. Hu, and J. W. Chew, "Adaptation of evapoporometry (EP) to characterize the continuous pores and interpore connectivity in polymeric membranes", J. Membr. Sci., 575, 17-27 (2019).
  53. M. Brun, A. Lallemand, J-F. Quinson, and C. Eyraud, "A new method for the simultaneous determination of the size and shape of pores: the thermoporometry", Thermochim. Acta, 21, 59-88 (1977).
  54. J. Quinson, N. Mameri, L. Guihard, and B. Bariou, "The study of the swelling of an ultrafiltration membrane under the influence of solvents by thermoporometry and measurement of permeability", J. Membr. Sci., 58, 191-200 (1991).
  55. L. Zeman, G. Tkacik, and P. Le Parlouer, "Characterization of porous sublayers in UF membranes by thermoporometry", J. Membr. Sci., 32, 329-337 (1991).
  56. C. Jallut, J. Lenoir, C. Bardot, and C. Eyraud, "Thermoporometry.: Modelling and simulation of a mesoporous solid", J. Membr. Sci., 68, 271-282 (1992).
  57. F. Cuperus, D. Bargeman, and C. Smolders, "Critical points in the analysis of membrane pore structures by thermoporometry", J. Membr. Sci., 66, 45-53 (1992).