DOI QR코드

DOI QR Code

음이온교환막 소재의 force-field 종류에 따른 이온 확산 특성 비교 분자동역학 전산모사 연구

Molecular Dynamics Simulation Study on the Comparison of Ion Diffusion Characteristics in Anion Exchange Membrane Materials Based on Different Force-Fields

  • 권나영 (경상국립대학교 에너지공학과) ;
  • 강현우 (경상국립대학교 에너지공학과) ;
  • 박치훈 (경상국립대학교 에너지공학과)
  • Na Yeong Kwon (Department of Energy Engineering, Gyeongsang National University) ;
  • Hyun Woo Kang (Department of Energy Engineering, Gyeongsang National University) ;
  • Chi Hoon Park (Department of Energy Engineering, Gyeongsang National University)
  • 투고 : 2024.10.13
  • 심사 : 2024.10.21
  • 발행 : 2024.10.30

초록

음이온 교환막(AEM) 수전해용 AEM 소재 개발은 재생 에너지를 활용한 수소 생산 기술을 개선하는 데 중요한 역할을 한다. 이러한 소재를 설계하고 최적화하는 데 분자동역학 전산모사가 유용하게 사용되지만, 전산모사 결과의 정확도는 사용된 force-field에 크게 의존한다. 본 연구의 목적은 AEM 소재의 구조와 이온 전도 특성을 예측할 때 force-field 선택이 미치는 영향을 체계적으로 조사하는 것이다. 이를 위해 poly(spirobisindane-co-aryl terphenyl piperidinium) (PSTP) 구조를 모델 시스템으로 선택하고 COMPASS III, pcff, Universal, Dreiding 등 네 가지 주요 force-field를 비교 분석하였다. 각 force-field의 특성과 한계를 평가하기 위해 298~353 K의 온도 범위에서 수화 채널 형태, 물 분자와 수산화 이온의 분포, 수산화 이온 전도성을 계산하였다. 이를 통해 AEM 소재의 분자동역학 전산모사에 가장 적합한 force-field를 제시하고, 고성능 AEM 소재 개발을 위한 계산 지침을 제공하고자 한다.

The development of anion exchange membrane (AEM) materials for anion exchange membrane water electrolysis are important in improving hydrogen production technology using renewable energy. Molecular dynamics simulations have been utilized as a useful tool for designing and optimizing these materials. However, the accuracy of simulation results highly depends on the force-field used. The purpose of this study is to systematically investigate the impact of force-field selection on predicting the structure and ion conduction characteristics of AEM materials. To this end, poly(spirobisindane-co-aryl terphenyl piperidinium) (PSTP) structure was selected as a model system, and four major force-fields - COMPASS III, pcff, Universal, and Dreiding - were compared and analyzed. To evaluate the characteristics and limitations of each force-field, hydration channel morphology, distribution of water molecules and hydroxide ions, and hydroxide ion conductivity were calculated over a temperature range of 298~353 K. Through this, we aimed to present the most suitable force-field for molecular dynamics simulations of AEM materials and provide computational guidelines for the future development of high-performance AEM materials.

키워드

과제정보

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다. (1345356213) This work was supported by the Glocal University 30 Project Fund of GyeongsangNational University in 2024.

참고문헌

  1. N. Ramaswamy and S. Mukerjee, "Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: Acid versus alkaline media", Adv. Funct. Mater., 2012, 491604 (2012).
  2. G.-J. Hwang, S.-G. Lim, S.-Y. Bong, C.-H. Ryu, and H.-S. Choi, "Preparation of anion exchange membrane using polyvinyl chloride (PVC) for alkaline water electrolysis", Korean J. Chem. Eng., 32, 1896 (2015).
  3. H. Wendt and H. Hofmann, "Ceramic diaphragms for advanced alkaline water electrolysis", J. Appl. Electrochem, 19, 605 (1989).
  4. V. Rosa, M. Santos, and E. Da Silva, "New materials for water electrolysis diaphragms", Int. J. Hydrogen Energy., 20, 697 (1995).
  5. W. Hu, X. Cao, F. Wang, and Y. Zhang, "A novel cathode for alkaline water electrolysis", Int. J. Hydrogen Energy., 22, 621 (1997).
  6. G. Merle, M. Wessling, and K. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", J. Membr. Sci., 377, 1 (2011).
  7. G.-J. Hwang and H.-S. Choi, "Hydrogen production systems through water electrolysis", Membr. J., 27, 477 (2017).
  8. H. Kang, C. H. Park, and C. H. Lee, "Development of molecular dynamics model for water electrolysis ionomer", Membr. J., 30, 433 (2020).
  9. J. Ahn and C. H. Lee, "Preparation and characterization of sulfonated poly (arylene ether sulfone) random copolymer reinforced membranes for fuel cells", Membr. J., 26, 146 (2016).
  10. Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006).
  11. N. Takimoto, L. Wu, A. Ohira, Y. Takeoka, and M. Rikukawa, "Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: Relationship between morphology and proton conduction", Polymer, 50, 534 (2009).
  12. C. Arthurs and A. Kusoglu, "Mechanical characterization of electrolyzer membranes and components under compression", J. Electrochem. Soc., 171, 094510 (2024).
  13. K. Zeng and D. Zhang, "Recent progress in alkaline water electrolysis for hydrogen production and applications", Prog. Energy Combust. Sci., 36, 307 (2010).
  14. K. Hoseong, L. So Young, K. Hyoung-Juhn, L. Chang Hyun, and P. Chi Hoon, "Molecular dynamics study of anion conducting ionomer under excessive water condition", Membr. J., 32, 475 (2022).
  15. T. Mayadevi, K. Min, O. Choi, J. E. Chae, H.-J. Kim, C. H. Choi, H. Kang, C. H. Park, and T.-H. Kim, "PPOs having piperidinium-based conducting head groups with extra molecular interaction sites as new anion exchange membranes", Int. J. Hydrogen Energy., 47, 16222 (2022).
  16. C. Hu, H. W. Kang, S. W. Jung, X. Zhang, Y. J. Lee, N. Y. Kang, C. H. Park, and Y. M. Lee, "Stabilizing the catalyst layer for durable and high performance alkaline membrane fuel cells and water electrolyzers", ACS Cent. Sci., 10, 603 (2024).
  17. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998).
  18. J. Yang, Y. Ren, A.-m. Tian, and H. Sun, "COMPASS force-field for 14 inorganic molecules, He, Ne, Ar, Kr, Xe, H2, O2, N2, NO, CO, CO2, NO2, CS2, and SO2, in liquid phases", J. Phys. Chem. B, 104, 4951 (2000).
  19. H. Sun, P. Ren, and J. Fried, "The COMPASS force-field: Parameterization and validation for phosphazenes", Comput. Theor. Polym. Sci., 8, 229 (1998).
  20. C. Casewit, K. Colwell, and A. Rappe, "Application of a universal force-field to organic molecules", J. Am. Chem. Soc., 114, 10035 (1992).
  21. C. Casewit, K. Colwell, and A. Rappe, "Application of a universal force-field to main group compounds", J. Am. Chem. Soc., 114, 10046 (1992).
  22. S. L. Mayo, B. D. Olafson, and W. A. Goddard, "DREIDING: A generic force-field for molecular simulations", J. Phys. Chem., 94, 8897 (1990).
  23. S. Korobeynikov, V. Alyokhin, and A. Babichev, "Simulation of mechanical parameters of graphene using the DREIDING force-field", Acta Mech., 229, 2343 (2018).
  24. C. Hu, H. W. Kang, S. W. Jung, M. L. Liu, Y. J. Lee, J. H. Park, N. Y. Kang, M. G. Kim, S. J. Yoo, and C. H. Park, "High free volume polyelectrolytes for anion exchange membrane water electrolyzers with a current density of 13.39 A cm-2 and a durability of 1000 h", Adv. Sci., 11, 2306988 (2024).