DOI QR코드

DOI QR Code

산화 그래핀의 이산화탄소 흡착 거동

On the Carbon Dioxide Sorption of Graphene Oxide

  • 박인호 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Inho Park (Department of Energy Engineering, Hanyang University) ;
  • Ho Bum Park (Department of Energy Engineering, Hanyang University)
  • 투고 : 2024.10.10
  • 심사 : 2024.10.18
  • 발행 : 2024.10.30

초록

비록 산화 그래핀의 비표면적은 환원된 산화 그래핀에 비해 낮지만, 산화 그래핀의 이산화탄소 흡착량은 기존 그래핀 또는 환원된 산화 그래핀에 비해 많다. Lerf-Klinowski 모델에 따르면, 산화 그래핀은 가장 자리와 면 내부에 수산화기, 에폭시드, 카보닐, 카복실기 등이 있으며, 이러한 작용기가 이산화탄소 분자와 강하게 결합하여 화학 흡착을 유도한다. 본 연구에서는 산소 플라즈마/UV 오존 및 열처리를 통해 그래핀 산화물의 산소 함량과 이산화탄소 흡착 친화도 사이의 상관관계를 탐구하였다. 산소 함량의 변화는 XPS와 FT-IR 분석을 통해 확인하였다. 흥미롭게도 산화 그래핀의 이산화탄소 흡착 경향은 전체 산소 함량과 정비례하지 않았다. 반면, XPS 분석 결과 산화 그래핀의 카보닐 작용기가 이산화탄소 흡착에 중요한 기여를 하는 것으로 나타났다. 이러한 연구 결과는 산화 그래핀의 특성 및 이를 활용한 탄소 포집 및 가스 저장 응용 가능성에 대한 통찰을 제공한다.

Although the surface area of graphene oxide (GO) is lower than that of reduced graphene oxide (rGO), the amount of carbon dioxide adsorbed on GO is higher compared to graphene or rGO. According to the Lerf-Klinowski model, GO contains hydroxyl, epoxide, carbonyl, and carboxyl groups on its edges and basal planes, which strongly bind carbon dioxide molecules, even leading to chemisorption. In this study, we explored the correlation between carbon dioxide sorption affinity and oxygen content in GO by applying oxygen plasma/UV ozone and thermal treatments. The variation in oxygen content was confirmed using XPS and FT-IR analysis. Interestingly, the trend of carbon dioxide sorption in GO was not directly proportional to the overall oxygen content. XPS peak analysis revealed that carbonyl groups significantly contribute to carbon dioxide sorption. These findings provide insight into the intrinsic properties of GO and its potential applications in carbon capture and gas storage.

키워드

과제정보

This work was supported by the Materials & Components Technology Development Program (Project number: 20011497) funded by the Ministry of Trade, Industry, & Energy (MOTIE, Korea).

참고문헌

  1. A. Lerf, H. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited", J. Phys. Chem. B., 102, 4477-4482 (1998).
  2. K. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666-669 (2004).
  3. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706-710 (2009).
  4. W. S. Hummers Jr. and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339-1339 (1958).
  5. D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, "Preparation and characterization of GO paper", Nature, 448, 457-460 (2007).
  6. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45, 1558-1565 (2007).
  7. G. Srinivas, J. W. Burress, J. Ford, and T. Yildirim, "Porous GO frameworks: Synthesis and gas sorption properties", J. Mater. Chem., 21, 11323-11329 (2011).
  8. J. W. Burress, S. Gadipelli, J. Ford, J. M. Simmons, G. Srinivas, and T. Yildirim, "GO framework materials: Theoretical predictions and experimental results", Angew. Chem. Int. Ed., 49, 8902-8904 (2010).
  9. G. Srinivas, J. W. Burress, T. Yildirim, and M. R. Hartman, "Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity", Carbon, 48, 630-635 (2010).
  10. A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati, and C. N. R. Rao, "Uptake of H2 and CO2 by graphene", J. Phys. Chem. C, 112, 15704-15707 (2008).
  11. J. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. Tascon, "GO dispersions in organic solvents", Langmuir, 24, 10560-10564 (2008).
  12. U. Hofmann and R. Holst, "The acid nature and methylation of graphitic oxide", Ber. Dtsch. Chem. Ges. B., 72, 754-771 (1939).
  13. G. Ruess, "uber das graphitoxyhydroxyd (graphitoxyd)", Monatsh. Chem., 76, 381-417 (1946).
  14. W. Scholz and H. B. Boehm, "Untersuchungen am Graphitoxid. VI. Betrachtungen zur Struktur des Graphitoxids", Z. Anorg. Allg. Chem., 369, 327-340 (1969).
  15. T. Nakajima, A. Mabuchi, R. Hagiwara, N. Watanabe, and F. Nakamura, "Discharge characteristics of graphite fluoride prepared via graphite oxide", J. Electrochem. Soc., 135, 273-277 (1988).
  16. M. E. Davis, "Ordered porous materials for emerging applications", Nature, 417, 813-821 (2002).
  17. R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, "High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture", Science, 319, 939-943 (2008).
  18. A. Torrisi, R. G. Bell, and C. Mellot-Draznieks, "Functionalized MOFs for enhanced CO2 capture", Cryst. Growth Des., 10, 2839-2841 (2010).
  19. A. Torrisi, C. Mellot-Draznieks, and R. G. Bell, "Impact of ligands on CO adsorption in metal-organic frameworks: First principles study of the interaction of CO with functionalized benzenes. II. Effect of polar and acidic substituents", J. Chem. Phys., 132, 044705 (2010).
  20. S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, and M. Schroder, "A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide", Nat. Mater., 11, 710-716 (2012).
  21. A. Bhattacharyya and C. M. Klapperich, "Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices", Lab Chip, 7, 876-882 (2007).
  22. A. Ganguly, S. Sharma, P. Papakonstantinou, and J. Hamilton, "Probing the thermal deoxygenation of GO using high-resolution in situ X-ray-based spectroscopies", J. Phys. Chem. C, 115, 17009-17019 (2011).
  23. G. T. Hefter and R. P. T. Tomkins, "The experimental determination of solubilities", Vol. 6, John Wiley and Sons, New York, NY (2003).
  24. S. Gregg and K. S. W. Sing, "Adsorption, surface area, and porosity", Academic Press, (1983).
  25. G. Titelman, V. Gelman, S. Bron, R. Khalfin, Y. Cohen, and H. Bianco-Peled, "Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide", Carbon, 43, 641-649 (2005).