DOI QR코드

DOI QR Code

Estimation of the Biological Effectiveness of Auger Electron-Emitting Radiopharmaceuticals for Targeted Radiotherapy

  • Teresa W. Na (Korea Institute of Radiological and Medical Sciences) ;
  • Jung-Young Kim (Korea Institute of Radiological and Medical Sciences) ;
  • Kwang Il Kim (Korea Institute of Radiological and Medical Sciences) ;
  • Ilsung Cho (Korea Institute of Radiological and Medical Sciences)
  • 투고 : 2024.06.17
  • 심사 : 2024.06.26
  • 발행 : 2024.06.30

초록

Relative biological effectiveness (RBE) plays an important role in relating physical dose to cell-killing biological dose. The calculation of the RBE is an important basic task in realization of radionuclide therapy using 64Cu. In this study, the method of calculating the RBE of emitted particles from 64Cu is presented using Monte Carlo simulation. U-87 MG cell model is designed to perform Monte Carlo simulation. The Geant4 simulation tool kit was used to simulate the secondary particles for transport into media. The specific energy in the cell nucleus and the domain was estimated. The Microdosimetric Kinetic model (MK model) is used to estimate RBE. The method presented in this study may be helpful to estimate biological dose in treatment with 64Cu.

키워드

과제정보

This work was supported in part by the National Research Foundation of Korea (NRF) funded by the Government of Korea [Ministry of Science and ICT (MSIT)] under Grant 2021-M2E7A2079182. This study was also supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by the Ministry of Science and ICT (MSIT), Republic of Korea (Grant No. 50461-2024 and 50462-2024).

참고문헌

  1. Andreas P, Margret S, Theresa O, Markus S, Hans-Jurgen W. [64Cu]NOTA-pentixather enables high resolution PET imaging of CXCR4 expression in a preclinical lymphoma model. EJNMMI radiopharm chem 2017;2:1-14.
  2. Tengzhi L, Morten K, Anna M,Kathrine RP. Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Research 2020;10:33.
  3. INTERNATIONAL ATOMIC ENERGY AGENCY, Relative Biological Effectiveness in Ion Beam Therapy, Technical Reports Series No. 461, IAEA, Vienna 2008
  4. Hawkins RB. A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res 1994;140:366-74.
  5. Hawkins RB. A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat Res 2003;160(1):61-9.
  6. Agostinelli S, Allison J, Amako, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell'Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Cadena s JJG, Gonzalez I, Abril G G, Greeniaus G, Greiner G, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto R, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawaba- ta Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampen T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Freitas KM, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O'Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Salvo AD, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Tehrani ES, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus JP, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D. Geant4 - a simulation toolkit. Nucl Instrum Meth A 2003;506(3):250-303.
  7. Incerti S, Ivanchenko A, Kyriakou M, Mantero A, Moretto P, Tran, Mascialino B, Champion C, Ivanchenko VN, Bernal MA, Francis Z, Villagrasa C, Baldacchino G, Gueye P, Capra R, Nieminen P, Zachara- tou C. Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project. Med Phys 2018;45:e722-39.
  8. Kouwenberg JJM, Wolterbeek HT, Denkova AG, Bos AJJ., Fluorescent nuclear track detectors for alpha radiation microdosimetry. Radiat Oncol 2018;13:1-11.
  9. adashi K, Hirohiko T, Eleanor AB, Jurgen D, Wilfried DN, Marco D, Oliver J, Ramona M, Roberto O, Richard P, Stanislav V, William TC. Carbon ion radiotherapy in Japan: an assessment of 20 years of clinical experience. Lancet 2015;16(2):e93-e100.
  10. Yuki K, Tatsuaki K, Yoshitaka M, Yoshiya F, Hiroyuki O, Toru A, Makoto S, Hiroshi S. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res 2006;166(4):629-38.
  11. Thomas F, Tabea P, Michael S. Update of the particle irradiation data ensemble (PIDE) for cell survival. Journal of Radiation Research 2021;62(4):645-55.
  12. Kusumoto T, Baba K, Hasegawa S, Rafy Q, Kodaira S. Estimation of biological effect of Cu-64 radiopharmaceuticals with Geant4-DNA simulation. Sci Rep 2022;12:8957.
  13. Fourie H, Nair S, Miles X, Rossouw D, Beukes P, Newman RT, Zeevaart JR, Vandevoorde C, Slabbert J. Estimating the Relative Biological Effectiveness of Auger Electron Emitter 123I in Human Lymphocytes. Frontiers in Physics 2020;8:567732.
  14. Wang W, Li C, Qiu R, Chen Y, Wu Z, Zhang H, Li J. Modelling of Cellular Survival Following Radiation-Induced DNA Double-St rand Breaks. Sci Rep 2018;8:16202.
  15. Schaarschmidt T, Na WK, Kim JY, Cho I. Estimation of DNA Damage in Human Fibroblast Cell from Radiopharmaceuticals by using Monte Carlo Simulation. J Radiopharm Mol Probes 2023;9(2):75-80.