DOI QR코드

DOI QR Code

A Review of Nanoparticles Utilized in the Removal of Radioactive Iodine from Wastewater Streams

  • Mah Rukh Zia (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Ji-Ae Park (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Jung Young Kim (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Kwang Il Kim (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS)) ;
  • Sajid Mushtaq (Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS))
  • 투고 : 2024.05.14
  • 심사 : 2024.06.13
  • 발행 : 2024.06.30

초록

Iodine contributes a major chunk of radioactive waste due to its broad spectrum of unstable isotopes. The environmental dissemination of these isotopes stems from nuclear reactors, the nuclear medicine industry, and nuclear calamities. Owing to the harmful effects of radioiodine on human health, many materials have been tested to remove iodine from wastewater streams. Among these materials, nanoparticles have shown significant ability because of their nanosized effects, high specific surface area, and ability to carry multiple functional groups. This paper, therefore, aims to review the nanoparticles that have shown sufficient adsorption for iodine in aqueous media. The manuscript seeks to elucidate the rationale for selecting specific nanomaterials and expound upon the underlying mechanisms governing the adsorption rate. It also discusses the necessary conditions for optimizing adsorption rates and the inherent limitations of these nanomaterials.

키워드

과제정보

This work was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KI-RAMS), funded by MSIT, Republic of Korea (No. 50462-2024).

참고문헌

  1. Baverstock K, Williams D. The Chernobyl accident 20 years on: an assessment of the health consequences and the international response. Science of the Total Environment 2006;114:1312-7.
  2. Kubota T, Fukutani S, Ohta T, Mahara YJ. Removal of radioactive cesium, strontium, and iodine from natural waters using bentonite, zeolite, and activated carbon. Journal of Radioanalytical and Nuclear Chemistry 2013;296:981-4.
  3. Steinhauser G, Brandl A, Johnson TE. Comparison of the Chernobyl and Fukushima nuclear accidents: a review of the environmental impacts. Science of the Total Environment 2014;470:800-17.
  4. Yilmaz D, Gurol A. Technology, Efficient removal of iodine-131 from radioactive waste by nanomaterials. Instrumentation Science & Technology 2021;49:45-54.
  5. Berends G, Kobayashi MJ. Food after Fukushima-Japan's regulatory response to the radioactive contamination of its food chain. Food and Drug LJ 2012;67:51.
  6. Kupper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther III GW, Lu Z, Jonsson MJ. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angewandte Chemie International Edition 2011;50:11598-620.
  7. Asmussen RM, Turner J, Chong S, Riley B. Review of recent developments in iodine waste form production. Frontiers in Chemistry 2022;10:1043653.
  8. Huve J, Ryzhikov A, Nouali H, Lalia V, Auge G. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC advances 2018;8:29248-73.
  9. Mnasri N, Charnay C, de Menorval LC, Moussaoui Y, Elaloui E, Zajac JM. Silver nanoparticle-containing submicron-in-size mesoporous silica-based systems for iodine entrapment and immobilization from gas phase. Microporous and mesoporous materials 2014;196:305-13.
  10. Yang JH, Cho YJ, Shin J. M, Yim M. Bismuth-embedded SBA-15 mesoporous silica for radioactive iodine capture and stable storage. Journal of Nuclear Materials 2015;465:556-64.
  11. Asmussen RM, Matyas J, Qafoku NP, Kruger AA. Silver-functionalized silica aerogels and their application in the removal of iodine from aqueous environments. Journal of Hazardous Materials 2019;379:119364.
  12. Jo SE, Choi JW, Choi S. Synthesis of silver-impregnated magnetite mesoporous silica composites for removing iodide in aqueous solution. Toxics 2021;9:175.
  13. Kalashnikova G, Zhitova E, Selivanova E, Pakhomovsky YA, Yakovenchuk V, Ivanyuk GY, Kasikov A, Drogobuzhskaya S, Elizarova I, Kiselev Y. The new method for obtaining titanosilicate AM-4 and its decationated form: Crystal chemistry, properties, and advanced areas of application. Microporous and Mesoporous Materials 2021;313:110787.
  14. Funabashi K, Fukasawa T, Kikuchi MJ. Investigation of silver-impregnated alumina for removal of radioactive methyl iodide. Nuclear technology 1995;109:366-72.
  15. Tang S, Choi S, Nan Y, Tavlarides L. Adsorption of methyl iodide on reduced silver-functionalized silica aerogel: Kinetics and modeling. AIChE Journal 2021;67:17137.
  16. Thammawong C, Opaprakasit P, Tangboriboonrat P, Sreearunothai P. Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment. Journal of nanoparticle research 2013;15:1-10.
  17. El-Khatib AM, Bondouk I, Omar KM, Hamdy A, Abbas MI, El-Khatib M, Hammoury SI, Gouda M. Impact of (nano ZnO/multi-wall CNTs) prepared by arc discharge method on the removal efficiency of stable iodine 127I and radioactive iodine 131I from water. Scientific Reports 2024;14:4242.
  18. Han S, Um W, Kim W. Development of bismuth-functionalized graphene oxide to remove radioactive iodine. Dalton Transactions 2019;48:478-85.
  19. Attallah M, Rizk S, El Afifi E. Efficient removal of iodine and chromium as anionic species from radioactive liquid waste using prepared iron oxide nanofibers. Journal of Radioanalytical and Nuclear Chemistry 2018;317:933945.
  20. Madrakian T, Afkhami A, Zolfigol MA, Ahmadi M, Koukabi N. Application of modified silica-coated magnetite nanoparticles for removal of iodine from water samples. Nano-Micro Letters 2012;4:57-63.
  21. Zia MR, Raza MA, Park SH, Irfan N, Ahmed R, Park JE, Jeon J, Mushtaq S. Removal of radioactive iodine using silver/iron oxide composite nano adsorbents. Nanomaterials 2021;11:588.
  22. Harijan DK, Chandra V, Yoon T, Kim K. Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. Journal of Hazardous Materials 2018;344:576-84.
  23. Yang, D, Sarina S, Zhu H, Liu H, Zheng Z, Xie M, Smith SV. Komarneni, S. J. A. C. I. E., Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes. Angewandte Chemie International Edition 2011;50:10594-8.
  24. Yang D, Liu H, Liu L, Sarina S, Zheng Z, Zhu H. Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale 2013;5:11011-8.
  25. Choi MH, Jeong SW, Shim HE, Yun SJ, Mushtaq S, Choi DS, Jang B.S, Yang JE, Choi YJ, Jeon J. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chemical Communications 2017;53:3937-40.
  26. Mao P, Liu Y, Liu X, Wang Y, Liang J, Zhou Q, Dai Y, Jiao Y, Chen S, Yang Y. Bimetallic AgCu/Cu2O hybrid for the synergetic adsorption of iodide from solution. Chemosphere 2017;180:317-25.
  27. Huang H, Sha X, Cui Y, Sun S, Huang H, He Z, Liu M, Zhou N, Zhang X, Wei Y. Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. Journal of colloid and interface science 2020;567:190-201.
  28. Mushtaq S, Husnain SM, Kazmi SAR, Abbas Y, Jeon J, Kim JY, Shahzad F. MXene/AgNW composite material for selective and efficient removal of radioactive cesium and iodine from water. Scientific Reports 2023;13:19696.