Acknowledgement
이 논문은 2023년 국립부경대학교 자율창의학술연구비(지속가능한 어업자원평가 향상에 관한 연구, 202407060001)의 지원을 받아 수행되었으며, 본 논문을 사려 깊게 검토하여 주신 심사워원님들과 편집위원님께 감사드립니다.
References
- Abadal M, Frau A, Hinz H and Cid Y. 2020. Jellytoring: Real-time jellyfish monitoring based on deep learning object detection. Sensors 20, 1708. http://dx.doi.org/10.3390/s20061708.
- Chang SJ and Ki JS. 2024. Population characteristics of the venomous giant jellyfish, Nemopilema nomurai, found in the Yellow and Northern East China Seas. J Environ Sci Int 33, 87-95. https://doi.org/10.5322/JESI.2024.33.1.87.
- Holmboe J. 2023. Fish tracking using detection in Aquaculture: A pilot study. M.S Thesis, Norwegian University of Life Sciences, Trondheim, Norway.
- Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S and Murphy K. 2017. Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7310-7311.
- Jia R, Lv B, Chen J, Liu H, Cao L and Liu M. 2023. Underwater object detection in marine ranching based on improved YOLOv8. J Mar Sci Eng 12, 55. https://doi.org/10.3390/jmse12010055.
- Kim DY, Lee JS and Kim DH. 2014. A study on direction of industrial utilization for jellyfish in Korea. J Fish Mar Sci Edu 26, 587-596. https://doi.org/10.13000/JFMSE.2014.26.3.587.
- Lee D, Han I, Chae J, Yoon W, Yang Y, Kim D and Lee K. 2019. Analysis of the advantage and disadvantage of harmful jellyfish's damage reduvion devices strategy types in the beach. The J Fish Mar Sci Edu 31, 1230-1241. https://doi.org/10.13000/JFMSE.2019.8.31.4.1230.
- Lee HY. 2010. Reproduction and feeding behavior of giant jellyfish, Nemopilema nomurai Kishinouye (Scyphozoa: Rhizostomeae). Ph. D. Thesis, Pukyong National University, Busan, Korea.
- Lee KH, Kim IO, Yoon WD, Shin JK and An HC. 2007. A study on vertical distribution observation of giant jellyfish (Nemopilema nomurai) using acoustical and optical methods. J Kor Soc Fish Tech 43, 355-361. https://doi.org/10.3796/KSFT.2007.43.4.355.
- Lin TY, Goyal P, Girshick R, He K and Dollar P. 2017. Focal loss for dense object detection. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2980-2988.
- Nawaeathne U, Kumari H and Kumari H. 2024. Comparative analysis of jellyfish classification: A study using YOLOv8 and pre-trained models. In: 2024 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 1-6. http://dx.doi.org/10.1109/SCSE61872.2024.10550783.
- Oh S, Kim KY, Lim WA, Park G, Oh H, Oh W and Lee K. 2021. Vertical distribution of giant jellyfish (Nemopilema nomurai) in the coastal waters of Korea and its correlation analysis by survey method. J Koran Soc Fish Ocean Technol 57, 351-564. https://doi.org/10.3796/KSFOT.2021.57.4.351.
- Oh S, Kim KY, Oh HJ, Park G, Oh W and Lee K. 2022. Spatiotemporal distribution of giant jellyfish (Nemopilema nomurai). Water 14, 2883. https://doi.org/10.3390/w14182883.
- Oh S, Kim KY, Youn SH, Lee S, Park G, Oh W and Lee K. 2024. A three-year comparison of fluctuations in the occurrence of the giant jellyfish (Nemopilema nomurai). Water 16, 2265. https://doi.org/10.3390/w16162265.
- Oh S, Kim KY, Youn SH, Lee S, Park G, Oh W and Lee K. 2024. Density estimation of giant jellyfish (Nemopilema nomurai) using a scientific echosounder. J Korean Soc Fish Ocean Technol 60, 18-26. https://doi.org/10.3796/KSFOT.2024.60.1.018.
- Park G, Bak S, Jang S, Gong S, Kwak J and Lee Y. 2023. Realtime detection of benthic marine invertebrates from, underwater images: A comparison between YOLO and transformer models. Korean J Remote Sens 39, 909-919. https://doi.org/10.7780/kjrs.2023.39.5.3.3.
- Pham TN, Nguyen VH, Kwon KR, Kim JH and Huh JH. 2024. Improved YOLOv5 based deep learning system for jellyfish detection. IEEE Access 12, 87838-87849. http://dx.doi.org/10.1109/ACCESS.2024.3405452.
- Recht B, Roelofs R, Schmidt L and Shankar V. 2019. Do imageNet classifiers generalize to imageNet?. In: Proceedings of the 36th International Conference on Machine Learning. Long Beach, CA, U.S.A., 5389-5400.
- Shin HH, Han I, Oh W, Chae J, Yoon E and Lee K. 2019. Estimation of moon jellyfish Aurelia Coerulea using hydroacoustic method off the Coast of Tongyeong, Korea. Korean J Fish Aquat Sci 52, 725-734. https://doi.org/10.5657/KFAS.2019.0725.
- Son YT, Lee SH, Lee JC and Kim JC. 2003. Water masses and frontal structures in winter in the Northern East China Sea. J Korean Soc Oceanog 8, 327-339.
- Weihong B, Yun J, Jiaxin L, LingLing S, Guangwei F and Wa J. 2023. In-situ detection method of jellyfish based on improved fater R-CNN and FP16. IEEE Access 11, 81803-81814. http://dx.doi.org/10.1109/ACCESS.2023.3300655.
- Yoon EA, Hwang DJ, Shin HH, Gwak DS and Cha CP. 2012. In Situ acoustic characteristics of the large jellyfish Nemopilema nomurai in the East China Sea. J Kor Soc Fish Tech 48, 256-268. http://dx.doi.org/10.3796/KSFT.2012.48.3.256.
- Yu WB. 2016. Study on the rDNA characteristics of harmful jellyfishes Aurelia sp.1 and Nemopilema nomurai in Krea. M.S. Thesis, Sangmyung University, Seoul, Korea.