DOI QR코드

DOI QR Code

Food Functionalities of Various Enzyme Hydrolysates Prepared from Olive Flounder Paralichthys olivaceus Steam-dried Roe Concentrate

넙치(Paralichthys olivaceus) 알의 증자-건조처리 농축분말로부터 다양한 효소 가수분해물의 제조 및 식품기능특성

  • Sang in Kang (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • In Seong Yoon (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Min Kyo Kim (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University) ;
  • Jung Suck Lee (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Min Soo Heu (Department of Food and Nutrition/Institute of Marine Industry, Gyeongsang National University)
  • 강상인 (경상국립대학교 해양식품공학과/해양산업연구소) ;
  • 윤인성 (경상국립대학교 해양식품공학과/해양산업연구소) ;
  • 김민교 (경상국립대학교 식품영양학과/해양산업연구소) ;
  • 이정석 (경상국립대학교 해양식품공학과/해양산업연구소) ;
  • 허민수 (경상국립대학교 식품영양학과/해양산업연구소)
  • Received : 2024.07.30
  • Accepted : 2024.10.22
  • Published : 2024.10.31

Abstract

In the present study, protein hydrolysates were prepared from olive flounder Paralichthys olivaceus roe concentrate using different commercial proteases, and their functional properties and bioactivities were examined. Protamex (PR; 21.6%) showed the highest degree of hydrolysis, followed by alcalase (AL; 21.1%) and aroase AP-10 (AA; 20.2%). With regard to foaming activity, trypsin, chymotrypsin (CH), and bromelain (BR) had values ranging 181-188%, followed by neutrase (152%) and AA (141%). CH (36%) and BR (70%) maintained foam stability for up to 15 min. The oil-in-water emulsifying activity index of CH (10.6 m2/g) was the highest among all the hydrolysates. Notably, the 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS+) radical scavenging activities (IC50) were significantly higher in pantidase NP-2 (68.1 ㎍/mL) and flavourzyme (FL, 69.8 ㎍/mL) than in other hydrolysates. The tyrosinase inhibitory activities of FL, PR, and AA were inhibited by 12.5-19.8%. Aangiotensin I converting enzyme inhibitory activity of the control was 80.9%, and that of the hydrolysates of CH, AA, PR, and AL, which exhibited higher inhibitory activity, ranged 87.6-90.7%. CH, BR, and AA AP-10 hydrolysates exhibited superior bioactivity and functional properties. Therefore, these hydrolysates can be used as food ingredients in novel types of functional food-enhancing seafood and food processing industries.

Keywords

References

  1. Adebiyi AP, Adebiyi AO, Hasegawa Y, Ogawa T and Muramoto K. 2009. Isolation and characterization of protein fractions from deoiled rice bran. Eur Food Res Technol 228, 391-401. https://doi.org/10.1007/s00217-008-0945-4.
  2. Adler-Nissen J. 1979. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27, 1256-1262. http://doi.org/10.1021/jf60226a042.
  3. Ahn CB, Je JY and Cho YS. 2012. Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Res Int 49, 92-98. https://doi.org/10.1016/j.foodres.2012.08.002.
  4. Aleman A, Gimenez B, Montero P and Gόmez-Guillen MC. 2011a. Antioxidant activity of several marine skin gelatins. LWT Food Sci Technol 44, 407-413. http://doi.org/10.1016/j.lwt.2010.09.003.
  5. Aleman A, Perez-Santin E, Bordenave-Juchereau S, Arnaudin I, Gomez-Guillen MC and Montero P. 2011b. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int 44, 1044-1051. https://doi.org/10.1016/j.foodres.2011.03.010.
  6. Bougatef A, Nedjar-Arroume N, Manni L, Ravallec R, Barkia A, Guillochon D and Nasri M. 2010. Purification and identification of novel antioxidant peptides from enzymatic hydrolysates of sardinelle (Sardinella aurita) by-products proteins. Food Chem 118, 559-565. http://dx.doi.org/10.1016/j.foodchem.2009.05.021.
  7. Cha JW, Yoon IS, Lee GW, Kang SI, Park SY, Kim JS and Heu MS. 2020. Food functionalities and bioactivities of protein isolates recovered from skipjack tuna roe by isoelectric solubilization and precipitation. Food Sci Nutri 8, 1874-1887. http://doi.org/10.1002/fsn3.1470.
  8. Chalamaiah M, Hemalatha MD, Jyothirmayi T, Diwan PV, Bhaskarachary K, Vajreswari A, Ramesh Kumar R and Dinesh Kumar B. 2015. Chemical composition and immunomodulatory effects of enzymatic protein hydrolysates from common carp (Cyprinus carpio) egg. Nutrition 31, 388-398. http://dx.doi.org/10.1016/j.nut.2014.08.006.
  9. Chalamaiah M, Narsing Rao G, Govardhana Rao D and Jyothirmayi T. 2010. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chem 120, 652-657. http://doi.org/10.1016/j.foodchem.2009.10.057.
  10. Chalamaiah M, Jyothirmayi T, Bhaskarachary K, Vajreswari A, Hemalatha R and Dinesh Kumar B. 2013. Chemical composition, molecular mass distribution and antioxidant capacity of rohu (Labeo rohita) roe (egg) protein hydrolysates prepared by gastrointestinal proteases. Food Res Int 52, 221-229. http://dx.doi.org/10.1016/j.foodres.2013.03.020.
  11. Choonpicharn S, Jaturasitha S, Rakariyatham N, Suree N and Niamsup H. 2015. Antioxidant and antihypertensive activity of gelatin hydrolysate from Nile tilapia skin. J Food Sci Technol 52, 3134-3139. http://doi.org/10.1007/s13197-014-1581-6.
  12. Chung IK, Kim HS, Kang KT, Choi YJ, Choi JD, Kim JS and Heu MS. 2006. Preparation and functional properties of enzymatic oyster hydrolysates. J Korean Soc Food Sci Nutr 35, 919-925. http://doi.org/10.3746/jkfn.2006.35.7.919.
  13. Diniz FM and Martin AM. 1997. Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. LWT Food Sci Technol 30, 266-272. https://doi.org/10.1006/fstl.1996.0184.
  14. Dong FD and Bechtel P. 2010. Fish Leftovers: New Life Ahead for Today's Discards?. Retrieved from https://agresearchmag.ars.usda.gov/2010/oct/leftovers on Jul 22, 2024.
  15. Fang X, Xie N, Chen X, Yu H and Chen J. 2012. Optimization of antioxidant hydrolysate production from flying squid muscle protein using response surface methodology. Food Bioprod Process 90, 676-682. https://doi.org/10.1016/j.fbp.2012.04.001.
  16. Foh MBK, Wenshui X, Amadou I and Jiang Q. 2012. Influence of pH shift on functional properties of protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food Bioprocess Technol 5, 2192-2200. https://doi.org/10.1007/s11947-010-0496-0.
  17. Galla NR. 2014. Physico-chemical, functional and antioxidant properties of roe protein concentrates from Cyprinus carpio and Epinephelus tauvina. J Food Pharm Sci 2, 15-22.
  18. Galla NR, Karakala B, Akula S and Pamidighantam PR. 2012a. Physico-chemical, amino acid composition, functional and antioxidant properties of roe protein concentrates obtained from Channa striatus and Lates calcarifer. Food Chem 132, 1171-1176. https://doi.org/10.1016/j.foodchem.2011.11.055.
  19. Galla NR, Pamidighantam PR, Akula S and Karakala B. 2012b. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chem 135, 1479-1484. https://doi.org/10.1016/j.foodchem.2012.05.098.
  20. Gehring CK, Gigliotti JC, Moritz JS, Tou JC and Jaczynski J. 2011. Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fish byproducts and low-value fish: A review. Food Chem 124, 422-431. https://doi.org/10.1016/j.foodchem.2010.06.078.
  21. Gbogouri GA, Linder M, Fanni J and Parmentier M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproduct hydrolysates. J Food Sci 69, 615-622. https://doi.org/10.1111/j.1365-2621.2004.tb09909.x.
  22. Ghassem M, Arihara K, Babji AS, Said M and Ibrahim S. 2011. Purification and identification of ACE inhibitory peptides from haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS. Food Chem 129, 1770-1777. https://doi.org/10.1016/j.foodchem.2011.06.051.
  23. Gimenez B, Aleman A, Montero P and Gomez-Guillen MC. 2009. Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chem 114, 976-983. https://doi.org/10.1016/j.foodchem.2008.10.050.
  24. Heu MS, Kim HS, Jung SC, Park CH, Park HJ, Yeum DM, Park HS, Kim CG and Kim JS. 2006. Food component characteristics of skipjack (Katsuwonus pelamis) and yellowfin tuna (Thunnus albacares) roes. J Kor Fish Soc 39, 1-8. https://doi.org/10.5657/kfas.2006.39.1.001.
  25. Himaya SWA, Ngo DH, Ryu BM and Kim SK. 2012. An active peptide purified from gastrointestinal enzyme hydrolysate of Pacific cod skin gelatin attenuates angiotensin-1 converting enzyme (ACE) activity and cellular oxidative stress. Food Chem 132, 1872-1882. https://doi.org/10.1016/j.foodchem.2011.12.020.
  26. Intarasirisawat R, Benjakul S, Visessanguan W and Wu J. 2012. Antioxidative and functional properties of protein hydrolysate from defatted skipjack (Katsuwonous pelamis) roe. Food Chem 135, 3039-3048. https://doi.org/10.1016/j.foodchem.2012.06.076.
  27. Intarasirisawat R, Benjakul S and Visessanguan W. 2011. Chemical compositions of the roes from skipjack, tongol and bonito. Food Chem 124, 1328-1334. https://doi.org/10.1016/j.foodchem.2010.07.076.
  28. Intarasirisawat R, Benjakul S, Wu J and Visessanguan W. 2013. Isolation of antioxidative and ACE inhibitory peptides from protein hydrolysate of skipjack (Katsuwana pelamis) roe. J Funct Foods 5, 1854-1862. https://doi.org/10.1016/j.jff.2013.09.006.
  29. Ishak NH and Sarbon NM. 2017. A review of protein hydrolysates and bioactive peptides deriving from wastes generated by fish processing. Food Bioprocess Technol 11, 2-16. http://doi.org/10.1007/s11947-017-1940-1.
  30. Jung WK, Mendis E, Je JY, Park PJ, Son BW, Kim HC, Choi YK and Kim SK. 2006. Angiotensin I-converting enzyme inhibitory peptide from yellowfin sole (Limanda aspera) frame protein and its antihypertensive effect in spontaneously hypertensive rats. Food Chem 94, 26-32. https://doi.org/10.1016/j.foodchem.2004.09.048.
  31. Kang KT, Heu MS and Kim JS. 2007. Improvement on the quality and functionality of red tanner crab cooking drip using commercial enzymes. J Korean Soc Food Sci Nutr 36, 1022-1030. http://doi.org/10.3746/jkfn.2007.36.8.1022.
  32. Kim HJ, Park KH, Shin JH, Lee JS, Heu MS, Lee DH and Kim JS. 2011. Antioxidant and ACE inhibiting activities of the rockfish Sebastes hubbsi skin gelatin hydrolysates produced by sequential two-step enzymatic hydrolysis. Fish Aquat Sci 14, 1-10. http://doi.org/10.5657/fas.2011.14.1.001.
  33. Kim SB, Yoon NY, Shim KB and Lim CW. 2016. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis. Fish Aquat Sci 19, 1-6. https://doi.org/10.1186/s41240-016-0028-6.
  34. Klomklao S and Benjakul S. 2016. Utilization of tuna processing byproducts: Protein hydrolysate from skipjack tuna (Katsuwonus pelamis) viscera. J Food Process Preserv 41, e12970. https://doi.org/10.1111/jfpp.12970.
  35. Klompong V, Benjakul S, Kantachote D and Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102, 1317-1327. https://doi.org/10.1016/j.foodchem.2006.07.016.
  36. Kristinsson HG and Rasco BA. 2000. Fish protein hydrolysates: Production, biochemical and functional properties. Crit Rev Food Sci Nutr 40, 43-81. http://doi.org/10.1080/10408690091189266.
  37. Kwon IS, Yoon IS, Kang SI, Kim JS, Kim HJ and Heu MS. 2022. Food characteristics of olive flounder Paralichthys olivaceus roe concentrates prepared using a cook-dried process. Korean J Fish Aquat Sci 55, 791-801. https://doi.org/10.5657/KFAS.2022.0791.
  38. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0.
  39. Lee GW, Yoon IS, Kang SI, Lee SG, Kim JI, Kim JS and Heu MS. 2017. Functionality and biological activity of isolate processed water generated during protein isolate preparation of fish roes using an isoelectric solubilization and precipitation process. Korean J Fish Aquat Sci 50, 694-706. https://doi.org/10.5657/KFAS.2017.0694.
  40. Lee HJ, Park SH, Yoon IS, Lee GW, Kim YJ, Kim JS and Heu MS. 2016. Chemical composition of protein concentrate prepared from yellowfin tuna Thunnus albacores roe by cook-dried process. Fish Aquat Sci 19, 12. http://dx.doi.org/10.1186/s41240-016-0012-1.
  41. Li GH, Le GW, Shi YH and Shrestha S. 2004. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24, 469-486. https://doi.org/10.1016/j.nutres.2003.10.014.
  42. Jianhua L, Lyu F, Zhou X, Wang B, Wang X and Ding Y. 2015. Preparation of skipjack tuna (Katsuwonus pelamis) protein hydrolysate using combined controlled enzymatic hydrolysis and glycation for improved solubility and emulsifying properties. J Food Nutr Res 3, 471-477. https://doi.org/10.12691/jfnr-3-7-9.
  43. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6.
  44. Mahmoodani F, Ghassem M, Babji AS, Yusop SM and Khos-rokhavar R. 2014. ACE inhibitory activity of pangasius catfish (Pangasius sutchi) skin and bone gelatin hydrolysate. J Food Sci Technol 51, 1847-1856. https://doi.org/10.1007/s13197-012-0742-8.
  45. Mahmoud KA, Linder M, Fanni J and Parmentier M. 2008. Characterisation of the lipid fractions obtained by proteolytic and chemical extractions from rainbow trout (Oncorhynchus mykiss) roe. Process Biochem 43, 376-383. https://doi.org/10.1016/j.procbio.2008.01.011.
  46. Mariod AA, Fathy SF and Ismail M. 2010. Preparation and characterisation of protein concentrates from defatted kenaf seed. Food Chem 123, 747-752. http://doi.org/10.1016/j.foodchem.2010.05.045.
  47. MOF (Ministry of Ocean and Fisheries). 2023. Statistical Yearbook of Oceans and Fisheries. Retrieved from https://www.mof.go.kr/statPortal/bbs/publication/view.do?ntt_id=1226&pageIndex=&searchType=&searchQuery= on Jul 22, 2024.
  48. Naqash SY and Nazeer RA. 2013. Antioxidant and functional properties of protein hydrolysates from pink perch (Nemipterus japonicus) muscle. J Food Sci Technol 50, 972-978. https://doi.org/10.1007/s13197-011-0416-y.
  49. Ngo DH, Ryu B and Kim SK. 2014. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation. Food Chem 143, 246-255. http://doi.org/10.1016/j.foodchem.2013.07.067.
  50. Pacheco-Aguilar R, Mazorra-Manzano MA and Ramirez-Suarez JC. 2008. Functional properties of fish protein hydrolysates from Pacific whiting (Merluccius productus) muscle produced by a commercial protease. Food Chem 109, 782-789. https://doi.org/10.1016/j.foodchem.2008.01.047.
  51. Park SH, Lee HJ, Yoon IS, Lee GW, Kim JS and Heu MS. 2016. Protein functionality of concentrates prepared from yellowfin tuna (Thunnus albacares) roe by cook-dried process. Food Sci Biotechnol 25, 1569-1575. https://doi.org/10.1007/s10068-016-0242-0.
  52. Park YB. 2009. Characteristics of angiotensin converting enzyme inhibitory peptides from Aroase AP10 hydrolysate of octopus. J Korean Soc Food Sci Nutr 38, 177-181. https://doi.org/10.3746/jkfn.2009.38.2.177.
  53. Phanturat P, Benjakul S, Visessanguan W and Roytrakul S. 2010. Use of pyloric caeca extract from bigeye snapper (Priacanthus macracanthus) for the production of gelatin hydrolysate with antioxidative activity. LWT Food Sci Technol 43, 86-97. https://doi.org/10.1016/j.lwt.2009.06.010.
  54. Sarmadi BH and Ismail A. 2010. Antioxidative peptides from food proteins: A review. Peptides 31, 1949-1956. http://doi.org/10.1016/j.peptides.2010.06.020.
  55. Shahidi F. 1994. Sea food processing by-products. In: Seafoods: Chemistry, Processing Technology and Quality. Shahidi F and Botta JR, eds. Springer, New York, NY, U.S.A., 321-334. http://doi.org/10.1007/978-1-4615-2181-5.
  56. Sikorski ZE. 1994. The contents of proteins and other nitrogenous compounds in marine animals. In: Seafood Proteins. Sikorski ZE, Pan BE and Shahidi F, eds. Springer, New York, NY, U.S.A., 6-12. https://doi.org/10.1007/978-1-4615-7828-4_2.
  57. Souissi N, Bougatef A, Triki-Ellouz Y and Nasri M. 2007. Biochemical and functional properties of sardinella (Sardinella aurita) by-product hydrolysates. Food Technol Biochnol 45, 187-194.
  58. Thiansilakul Y, Benjakul S and Shahidi F. 2007. Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem 31, 266-287. https://doi.org/10.1111/j.1745-4514.2007.00111.x.
  59. Wiriyaphan C, Chitsomboon B and Yongsawadigul J. 2012. Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chem 132, 104-111. http://dx.doi.org/10.1016/j.foodchem.2011.10.040.
  60. Yoon IS, Kim HJ, Kang SI, Kim DY, Lee CY, Jeong UC, Kim JS and Heu MS. 2020. Food functionality and bioactivity of vacuum freeze-dried fish roe concentrates. Korean J Fish Aquat Sci 53, 403-416. http://doi.org/10.5657/KFAS.2020.0403.
  61. Yoon IS, Lee GW, Kang SI, Park SY, Kim JS and Heu MS. 2017. Food functionality and biological activity of processed waters produced during the preparation of fish roe concentrates by cook-dried process. Korean J Fish Aquat Sci 50, 506-519. https://doi.org/10.5657/KFAS.2017.0506.
  62. Yoon IS, Lee GW, Kang SI, Park SY, Lee JS, Kim JS and Heu MS. 2018. Chemical composition and functional properties of roe concentrates from skipjack tuna (Katsuwonus pelamis) by cook-dried process. Food Sci Nutr 6, 1276-1286. https://doi.org/10.1002/fsn3.676.
  63. Yoon IS, Lee HJ, Kang SI, Park SY, Kang YM, Kim JS and Heu MS. 2019. Food functionality of protein isolates extracted from yellowfin tuna (Thunnus albacares) roe using alkaline solubilization and acid precipitation process. Food Sci Nutr 7, 412-424. http://doi.org/10.1002/fsn3.793.
  64. Yoon IS, Kang SI, Kim JS, Kwon IS Kim HJ and Heu MS. 2023. Food functionality and in vitro bioactivity of olive flounder Paralichthys olivaceus roe concentrates prepared by cook-dried process. Korean J Fish Aquat Sci 56, 7-20. https://doi.org/10.5657/KFAS.2023.0007.
  65. Zhang Y, Duan X and Zhuang Y. 2012. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin. Peptides 38, 13-21. http://doi.org/10.1016/j.peptides.2012.08.014.
  66. Zhou D, Qin L, Zhu B, Li D, Yang J, Dong X and Murata Y. 2012. Optimisation of hydrolysis of purple sea urchin (Strongylocentrotus nudus) gonad by response surface methodology and evaluation of in vitro antioxidant activity of the hydrolysate. J Sci Food Agric 92, 1694-1701. http://doi.org/10.1002/jsfa.5534.
  67. Zhuang YL, Zhao X and Li BF. 2009. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen. J Zhejiang Univ Sci B 10, 572-579. http://doi.org/10.1631/jzus.B0920081.