
Journal of Internet Computing and Services(JICS) 2024. Oct.: 25(5): 41-51 41

HPC 클러스터 기반 사용자 맞춤형 컨테이너
이미지 관리자 및 빌더

☆

HPC Cluster-based Customized Container Image Manager and Builder

이 국 화1* 우 준1 홍 태 영1

Gukhua Lee Joon Woo Taeyoung Hong

요 약

본 논문은 고성능컴퓨팅 환경에서 사용자 맞춤형 컨테이너 이미지를 관리하고 구축하기 위한 새로운 접근 방식을 소개하며,

컴퓨팅 워크플로에서 유연성, 확장성 및 효율성에 대한 증가하는 요구사항 들을 해결하였다. 이 논문의 기여에는 컨테이너 기반

고성능컴퓨팅 인프라 내에서 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더의 개발과 통합이 포함된다. 이 시스템을 통해 사용
자는 맞춤화된 AI 서비스 플랫폼을 손쉽게 생성하고, 관리하고, 배포할 수 있어 필요한 패키지와 프레임워크를 구성하는 데 적은

시간과 노력을 들일 수 있다. 논문에서 개발한 이미지 관리자는 여러 사용자 요청을 동시에 처리하여 컴퓨팅 노드에서 작동하는

이미지 빌더에 작업을 효율적으로 분배할 수 있다. 이미지 빌더는 대기 중인 작업을 처리하고 실행 중인 인스턴스를 대상으로
사용자 맞춤형 컨테이너 이미지를 생성하고, 이러한 이미지를 프라이빗 컨테이너 레지스트리에 저장하도록 설계되어 원활한 액

세스와 재사용성을 보장한다. 본 연구는 누리온 슈퍼컴퓨터와 뉴론 GPU 시스템을 포함한 고성능컴퓨팅 클러스터 기반 시스템에

구현하여 시스템의 기능 효과를 검증하여 실제 서비스 환경에서 확장성과 상호 운용성을 입증하였다. 또한 본 논문에서는 기존
컨테이너 기반 슈퍼컴퓨팅 프레임워크와의 원활한 통합을 보장하는 아키텍처와 메커니즘을 제안하여 리소스 활용을 최적화하고

AI 서비스 플랫폼의 배포 복잡성을 줄이는 역할을 하였다.

☞ 주제어 : 고성능컴퓨팅, 사용자 맞춤형 컨테이너 이미지, 이미지 관리자, 슈퍼컴퓨팅 환경

ABSTRACT

This paper introduces a novel approach for managing and building customized container images in high-performance

computing (HPC) environments, addressing the growing need for flexibility, scalability, and efficiency in computational workflows.

Our contributions include the development and integration of a custom container image manager and builder within a

container-based HPC infrastructure. This system enables users to effortlessly create, manage, and deploy personalized AI service

platforms, significantly enhancing the user experience by reducing the time and effort required to configure essential packages

and frameworks. The image manager we developed is capable of processing multiple user requests concurrently, distributing tasks

efficiently to image builders operating on compute nodes. Meanwhile, the image builder is designed to handle queued tasks,

generate customized container images based on active instances, and store these images in a private container registry, ensuring

seamless access and reusability. We validated our system's effectiveness by implementing it on HPC cluster-based systems, including

the Nurion supercomputer and the Neuron GPU system, demonstrating its scalability and interoperability in real-world environments.

Additionally, we established an architecture and mechanism that ensures seamless integration with existing container-based

supercomputing frameworks, underscoring our system's capability to optimize resource utilization and streamline the deployment of

AI service platforms.

☞ keyword : High-performance computing, Customized container image, Image manager, Supercomputing environment

1 Korea Supercomputing Infrastructure Center, Korea Institute of
Science and Technology Information, Daejeon, 34141, Korea.

* Corresponding author (ghlee@kisti.re.kr)
[Received 14 May 2024, Reviewed 18 May 2024(R2 13 August
2024), Accepted 26 September 2024]
☆ This research has been performed as a project of Project No.

K24L2M1C1 (The national flagship supercomputer infrastructure
implementation and service) supported by the Korea Institute of

1. Introduction

The increasing demand for HPC in various fields such as

scientific research, data-intensive applications, and AI

Science and Technology Information (KISTI).
☆ A preliminary version of this paper was presented at ICONI

2023.

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2024 KSII

http://dx.doi.org/10.7472/jksii.2024.25.5.41

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

42 2024. 10

development has driven the evolution of computational

environments [1,2]. Container technologies have emerged as

a pivotal innovation, offering flexibility, portability, and

efficiency in managing complex applications across diverse

computing platforms. These technologies have significantly

impacted HPC environments by enabling the encapsulation

of applications and their dependencies into lightweight,

portable units that can be executed consistently across

different systems.

Containers provide a robust solution to the challenges

posed by traditional HPC infrastructures, such as dependency

management, resource allocation, and scalability. By

isolating applications within containers, users can achieve

reproducibility of computational experiments, streamline

deployment processes, and optimize the utilization of HPC

resources. As a result, containerization has become a key

enabler for advancing HPC capabilities, particularly in areas

requiring rapid iteration and deployment, such as AI and

machine learning.

Various organizations, including the Jülich Supercomputing

Center (JSC), Swiss National Supercomputing Center

(CSCS), and National Energy Research Scientific Computing

Center (NERSC), provide Jupyter services on supercomputers,

and Google offers the Colab service [3] to its users. The

foundational infrastructure configurations for these services

are container-based [4]. However, these configurations pose

the inconvenience of requiring users to install and configure

essential packages and frameworks each time they access

and execute the service using an initialized container image

[5].

This paper introduces a novel approach to managing and

building customized container images tailored for HPC

environments. Our solution leverages (1) containerization to

enhance the flexibility and efficiency of HPC workflows, (2)

providing users with the ability to create, manage, and

deploy personalized computational environments with ease.

By integrating a sophisticated (3) image manager and (4)

builder within a container-based HPC infrastructure, we aim

to address the specific needs of HPC users, offering a

scalable and user-friendly platform that optimizes resource

utilization and streamlines the deployment of AI service

platforms such as Jupyter and RStudio.

In the following sections, we explore the existing

research on containerization in HPC environments,

comparing various approaches based on key aspects such as

HPC integration, security, resource overhead, customization,

ease of use, and user privileges in section 2. We then

present the architecture of our proposed solution in section

3, detailing the components and mechanisms that enable the

efficient management and building of customized container

images in an HPC context in section 4. Finally, we discuss

the implementation of our system, highlighting its

effectiveness and scalability in real-world HPC environments

(a web-based portal called MyKSC) in section 5, and

conclude with potential future enhancements to further

improve its capabilities in the last section. The whole

approach has been applied to KISTI-5 supercomputer,

known as the CPU-only system Nurion, and the GPU

system Neuron.

2. Related Work

The advent of container technologies has profoundly

transformed the HPC landscape by offering efficient,

portable, and scalable solutions for managing applications

and resources. This section reviews existing research in HPC

containerization, with a particular focus on customized

container image management and building. Various

approaches are compared based on their key features and

capabilities. Table 1 presents a comparative analysis of

different studies on containerization in HPC environments.

The comparison is based on several critical aspects: HPC

integration, security, resource overhead, customization, and

ease of use, rated as High (H), Moderate (M), or Low (L),

based on subjective evaluation. Additionally, root privilege

requirements are indicated as either Yes or No.

① HPC Integration: This refers to the degree to which a

solution is architected to operate efficiently within HPC

environments. Effective HPC integration involves the

optimization of computational resources and

infrastructure, ensuring that the solution leverages the

full capabilities of the HPC system.

② Security:Security encompasses the strategies and

protocols implemented to safeguard data and applications

within a solution. In the context of HPC, this is

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

한국 인터넷 정보학회 (25권5호) 43

particularly crucial for maintaining secure and reliable

operations in environments with multiple users, where

data integrity and access control are paramount.

③ Resource Overhead:Resource overhead refers to the

additional computational or memory resources that a

solution consumes. This factor is critical as it affects the

overall efficiency and performance of the HPC system.

Lower resource overhead typically leads to better

utilization of the system's capabilities.

④ Customization: Customization reflects the extent to which

a solution can be configured or tailored to meet specific

user requirements. High levels of customization allow

users to adapt the solution to a wide range of application

needs, enhancing its applicability and usefulness in

various scenarios.

⑤ Ease of Use:Ease of use is a measure of how accessible

and user-friendly a solution is. This includes

considerations such as the simplicity of its interface, the

quality and availability of documentation, and the overall

learning curve required for users to effectively operate

the solution. Solutions that are easy to use are more

likely to be widely adopted and successfully

implemented.

⑥ User Privileges: This aspect addresses the access rights

necessary to utilize or manage a solution. Specifically, it

examines whether root (administrator) access is required,

which has significant implications for both the security

and flexibility of the solution. Solutions that do not

require elevated privileges are often more secure and

easier to deploy in diverse environments.

(Table 1) Feature comparison of related work

① ② ③ ④ ⑤ ⑥

[1] H H L H M No

[2] H H L H H No

[3] M M M H H Yes

[4] H H L M M No

[5-10] H H L H M No

[11-14] M M M H H Yes

[15-18] H H L H M No

Ours H M H H H No

Ferreira et al. [1], Suarez et al. [2], and several other

works focus on the high integration of HPC environments

with container technologies, ensuring that these solutions are

secure, do not require root privileges, and have low resource

overhead. These studies emphasize the need for extensive

customization and high performance, which are crucial for

demanding HPC applications like fusion research and deep

learning.

Younge et al. [4] and Hursey [5] provide insights into

container deployment on supercomputers and clouds,

highlighting the performance benefits and security

considerations of containerized HPC applications. These

works underline the importance of user privileges and

resource efficiency. Singh, Tiwari and Dhar [6], Brown

and Johnson [7], and [9] focus on enhancing the

performance of machine learning workloads and deep learning

applications on HPC systems. They emphasize the necessity

for optimized container images and high-performance

execution.

Ali et al. [3], Zhang and Lomeo [11], and Pandey and

Diwakar [12] explore cloud-based solutions, which, while

powerful, often require root privileges and may introduce

moderate resource overhead. These solutions are highly

customizable and user-friendly, making them suitable for

rapid deployment and real-time processing tasks. Ben-Nun

[10] and Wu et al.[15] discuss optimizing containerized

workflows and managing massive datasets, respectively.

These studies highlight the integration of container

technologies in HPC for improved performance and resource

management.

Diaz et al. [16] and Takizawa et al. [17] provide early

and recent perspectives on cloud and HPC integration using

containerization. They focus on the secure and scalable

deployment of applications, ensuring high performance and

ease of use. Zhiravetska et al. [18] illustrate the application

of HPC containerization in educational contexts, showcasing

how containerized environments can enhance learning and

research.

The comparative analysis reveals that while several

solutions and research works have made significant strides in

integrating container technologies with HPC, they vary in

their approach to security, customization, and ease of use.

The proposed "HPC Cluster-based Customized Container

Image Manager and Builder" aims to leverage the best

practices identified in these studies to offer a comprehensive,

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

44 2024. 10

efficient, and secure solution tailored for HPC environments.

3. Architecture

The service architecture depicted in Figure 1 illustrates

the framework for delivering tailored AI service platforms,

namely Jupyter and RStudio, via MyKSC, leveraging both

an image manager and image builder. Our objective is to

establish a cohesive architecture and mechanism within a

container-based HPC environment.

(Figure 1) The overall service architecture

Our architecture operates within a container-based HPC

environment, ensuring flexibility, scalability, and reproducibility

of computational tasks. By encapsulating each service within

a container, we facilitate seamless deployment and

management of AI platforms while maintaining consistent

runtime environments.

The image manager serves as a crucial component,

orchestrating communication between the image builder and

the MyKSC Hub. It functions as a centralized control point,

responsible for coordinating the creation, storage, and

distribution of container images. Leveraging Docker Private

Registry as the underlying infrastructure, the image manager

streamlines the management of containerized services.

At the heart of our architecture lies the MyKSC Hub, a

comprehensive platform designed to host and administer AI

services. Built upon the foundation of Docker Private

Registry, the MyKSC Hub serves as a secure and efficient

repository for storing container images. It provides users

with seamless access to Jupyter and RStudio environments,

enabling them to leverage advanced AI capabilities for their

research and development tasks.

Our architecture embodies an integrated mechanism that

harmonizes the functionalities of various components to

deliver a cohesive AI service platform. The orchestrated

interplay between the image manager, image builder, and

MyKSC Hub ensures smooth operation and optimal

performance of the customized AI environments. Users can

effortlessly deploy, manage, and interact with Jupyter and

RStudio instances, thereby enhancing their productivity and

computational workflows.

By embracing containerization within a container-based

HPC environment, coupled with a sophisticated architecture

comprising the image manager and MyKSC Hub, we

establish a robust foundation for delivering customized AI

service platforms. This integrated approach not only

simplifies the deployment process but also enhances the

overall user experience, empowering researchers and

practitioners to harness the full potential of AI technologies

for their diverse endeavors.

3.1 Image Manager

Figure 2 illustrates the pivotal role of the image manager

in bolstering processing efficiency within the system. By

integrating a task queue mechanism, the image manager

optimizes the handling of image-saving requests, enabling

concurrent processing from multiple users in a distributed

environment across the HPC cluster-based system.

(Figure 2) Image manager and builder architecture

The task queue mechanism embedded within the image

manager facilitates the efficient processing of image-saving

requests. Through distributed and parallel processing

techniques, tasks are systematically queued and executed,

ensuring optimal resource utilization and minimizing latency.

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

한국 인터넷 정보학회 (25권5호) 45

This approach enhances system throughput and responsiveness,

thereby accommodating the demands of concurrent users

seamlessly.

At the core of the image manager lies a RESTful API,

developed using Flask, a lightweight web framework for

Python. This API serves as the interface for processing

requests originating from the web portal, providing a

standardized and accessible means for users to interact with

the system. By adhering to REST principles, the API

promotes modularity, scalability, and interoperability,

facilitating seamless integration with other system

components.

To delegate tasks to the image builder residing on

compute nodes, the image manager leverages a Redis

message broker. Redis, renowned for its high-performance

and low-latency characteristics, serves as the intermediary

for transmitting task-related messages between the image

manager and compute nodes. This decoupled architecture

enhances system reliability and scalability, enabling efficient

task distribution and management across the distributed

environment.

Furthermore, the image manager incorporates functionality

for monitoring and recording the status of image processing

tasks in a dedicated database. By maintaining a

comprehensive record of task execution, including status

updates and completion notifications, the system ensures

transparency and accountability throughout the image-saving

process. Users can track the progress of their requests in

real-time, fostering trust and confidence in the system's

performance and reliability.

Through the seamless integration of task queueing

mechanisms, RESTful API services, Redis message

brokering, and database-driven status tracking, the image

manager serves as a cornerstone for enhancing processing

efficiency and user experience within the system. By

orchestrating distributed and parallel processing of image-saving

requests, the image manager empowers the system to handle

concurrent user demands effectively, thereby optimizing

resource utilization and system responsiveness.

3.2 Image Builder

The image builder plays a pivotal role in the system's

architecture, executing user requests received from the image

manager with the aid of the Celery framework. This

component is responsible for a series of intricate tasks aimed

at transforming a running container into a reusable container

image, facilitating seamless deployment and sharing across

the system.

Utilizing the Celery distributed task queue framework, the

image builder efficiently processes user requests in an

asynchronous and distributed manner. Celery orchestrates

task execution across compute nodes, enabling parallel

processing and load balancing to maximize system

throughput and responsiveness. This distributed architecture

enhances scalability and fault tolerance, ensuring robust

performance under varying workload conditions.

(Figure 3) Image builder flowchart

As shown in Figure 3, the primary task of the image

builder revolves around the transformation of a running

container into a container image. This process involves

capturing the current state of the container, including its file

system, configuration, and dependencies, and encapsulating it

into a portable image format. Once the image creation

process is complete, the image builder orchestrates the

transfer of the newly created image to the designated

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

46 2024. 10

container registry, namely the MyKSC Hub. This private

registry serves as a centralized repository for storing and

managing container images, providing secure and efficient

access to users across the system.

In addition to image creation and transfer, the image

builder is tasked with maintaining comprehensive records of

image processing tasks in the system's database. By logging

essential metadata, such as task status, completion

timestamps, and associated user information, the image

builder ensures transparency and accountability throughout

the image-building process. This record-keeping functionality

enables users to track the progress of their requests and

retrieve relevant information regarding completed tasks,

fostering trust and confidence in the system's operations.

Installed on each compute node within the HPC cluster,

the image builder is meticulously configured to handle

multiple tasks concurrently, leveraging the available

computational resources efficiently. Furthermore, the image

builder's architecture is designed to adapt dynamically to

fluctuations in resource utilization, allowing for seamless

scalability and resource allocation based on workload

demands. This dynamic expansion capability ensures optimal

utilization of compute resources while maintaining

responsiveness and performance across the system.

The image builder serves as a critical component in the

system's architecture, orchestrating the transformation of

running containers into reusable container images with

precision and efficiency. Through its integration with the

Celery framework, coupled with robust task execution

capabilities, the image builder empowers the system to

handle diverse user requests seamlessly. By facilitating

image creation, transfer, and database record maintenance,

the image builder enhances system reliability, scalability, and

user experience, laying the foundation for efficient

containerized workflows within the HPC environment.

4. Implementation

4.1 Integration Components

Within the AI services, every application runs as a

Kubernetes-based service pod. We created a designed image

manager and builder for RStudio and Jupyter pods. The six

components of the workflow were used to construct the

integration architecture using Kubernetes, as shown in Figure

4. The integration workflow outlined above illustrates the

orchestrated interaction between users, Kubernetes container

management, and specialized components for image

management and customization. By leveraging Kubernetes'

capabilities alongside custom-built image management

components, users benefit from a seamless and flexible

environment for developing and deploying AI applications

within the Kubernetes cluster.

(Figure 4) Integration components workflow

① Users interact with the container manager, which in

this case is Kubernetes, to submit requests for creating

service applications, such as Jupyter and RStudio.

Kubernetes is a container orchestration platform that

automates the deployment, scaling, and management of

containerized applications.

② The container manager utilizes pre-configured YAML

scripts to deploy pods for the requested service applications.

A pod is the smallest deployable unit in Kubernetes and

comprises one or more containers that share resources and

network space.

③ Once the pods for Jupyter or RStudio are deployed,

users can access them and install the necessary AI model

packages or libraries directly into the service pods

(containers). This allows users to customize their

development environment according to their specific

requirements.

④ After configuring the development environment within

the service pods, users can utilize the MyKSC portal to

submit a request to the image manager to save the current

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

한국 인터넷 정보학회 (25권5호) 47

environment. This request is sent via the portal in multiple

formats, including the JSON data format. The image

manager processes these requests and sends them to the

image builder component that runs on a specific node within

the Kubernetes cluster.

⑤ Upon receiving commands from the image manager,

the image builder uses the NERDCTL tool to commit the

running container to a customized image. NERDCTL is a

command-line interface that manages container images and

containers. Once customization is complete, the customized

image is uploaded to the MyKSC Hub, which serves as a

repository for storing and managing container images within

the Kubernetes cluster.

⑥ Users can then access and manage their customized

images through the MyKSC portal. This portal provides a

user-friendly interface for viewing and managing container

images, allowing users to easily track and utilize their

customized development environments as required.

4.2 Functional Components

The backend of the web portal was integrated with four

functions (shown in Figure 5). The SAVE function makes it

easier to send user data and the required parameter values in

JSON data format to the image manager. The state of the

image processing was continuously observed using the CHK

function. Depending on the resource type, the images were

divided into GPU and CPU categories. App.py contains the

code for the SAVE and CHK functions, which use Flask,

Celery, and Redis. Tasks.py defines the tasks for every

builder in app.py. The Harbor API is used by the LIST and

DEL functions to list user images and make it possible to

delete each user image.

(Figure 5) Functional components workflow

The SAVE function simplifies the process of transmitting

user data and required parameter values to the image

manager by encapsulating them in JSON data format. This

function enhances user experience by providing a

streamlined interface for submitting requests to the image

manager component. Users can effortlessly specify their

customization preferences and submit them to initiate the

image processing workflow.

The CHK function continuously monitors the state of

image processing, providing real-time feedback to users

regarding the progress and status of their requests. By

actively observing the image processing workflow, users can

stay informed about the completion status and any potential

errors or issues encountered during the process. This

proactive monitoring capability enhances transparency and

user engagement, ensuring a seamless experience throughout

the image customization process.

Depending on the resource requirements of users, the

images generated by the system are categorized into GPU

and CPU categories. This classification enables users to

select and deploy customized images tailored to their

specific computational needs. By offering distinct categories

based on resource types, the system ensures optimal

utilization of available computing resources and

accommodates diverse user preferences and requirements

The backend functionalities, including the SAVE and

CHK functions, are implemented within the app.py file using

Flask, Celery, and Redis. Flask serves as the web framework

for building the web portal's backend, providing tools and

utilities for handling HTTP requests and responses. Celery, a

distributed task queue framework, facilitates asynchronous

task execution, enabling efficient processing of image

customization requests. Redis, acting as the message broker,

facilitates communication between Flask and Celery,

ensuring reliable task dispatch and execution.

Additionally, the tasks.py file defines the tasks associated

with each builder component, complementing the

functionalities implemented in app.py. This modular

approach enhances code organization and maintainability,

facilitating scalability and extensibility of the backend

system.

The LIST and DEL functions leverage the Harbor API to

list user images and enable the deletion of individual user

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

48 2024. 10

images, respectively. Harbor, a cloud-native registry for

storing, signing, and scanning container images, provides a

robust API for interacting with container images stored

within the repository. By integrating with the Harbor API,

the web portal enables users to manage their customized

images efficiently, including listing available images and

performing deletion operations as needed.

The integration of backend functions within the web

portal enhances user interaction and facilitates efficient

management of image customization tasks. By leveraging

Flask, Celery, Redis, and the Harbor API, the backend

system offers a seamless experience for submitting,

monitoring, and managing image processing requests. This

integrated approach ensures reliability, scalability, and

flexibility, empowering users to customize and deploy AI

environments tailored to their specific needs and preferences.

4.3 Experimental Result

To enhance user convenience and streamline the image

creation process, we have integrated several user-friendly

features into our web portal:

One-Button Image Creation: We have introduced a

one-button function on our web portal designed to simplify

the process of creating customized images. This feature

allows users to generate images of their current environment

with just a single click. By minimizing the number of steps

required, we aim to make image creation more accessible

and efficient for all users. This functionality is illustrated in

Figure 6.

(Figure 6) User interface of image save button

Real-Time Progress Monitoring: As users initiate the

image creation process, they can easily track its progress

through a visual processing bar displayed on the web

interface. This progress bar provides real-time updates,

showing how far along the image creation process is and

allowing users to stay informed about the status of their

request. This feature ensures users are aware of the ongoing

process and can anticipate when their image will be ready.

The processing bar is depicted in Figure 7.

(Figure 7) User interface of image process

Image Management Interface: Once the image creation

is complete, users can access a comprehensive management

interface on the web portal to view and handle their created

images. This interface presents a list of all images associated

with the user account, allowing users to easily organize,

review, and manage their images. The management

functionality is designed to be straight forward and intuitive,

providing users with control over their image assets. This

aspect of the portal is shown in Figure 8.

(Figure 8) User interface of customized image list

5. Conclusion

In this paper, we introduced a novel approach for

managing and creating customized container images within

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

한국 인터넷 정보학회 (25권5호) 49

HPC environments. Our solution integrates a sophisticated

image manager and builder into a container-based HPC

infrastructure, addressing key needs for flexibility,

scalability, and efficiency in computational workflows. The

implemented system facilitates the effortless creation,

management, and deployment of personalized AI service

platforms, optimizing the user experience by minimizing the

manual configuration of essential packages and frameworks.

Validation on real-world HPC systems, including the Nurion

supercomputer and the Neuron GPU system, demonstrates

the solution's effectiveness, scalability, and seamless

integration with existing frameworks. Meanwhile, our

experimental result has following limitations:

Scalability Constraints: Although our system performs

well under current conditions, its scalability may be limited

by the capacity of the underlying compute nodes and

network infrastructure. As user demand grows, further

enhancements may be required to maintain performance and

responsiveness.

Resource Overhead: While the system optimizes

resource utilization, the process of creating and managing

container images still incurs some level of resource

overhead. This overhead could impact performance in highly

resource-constrained environments.

According to these limitations, future work will focus on

enhancing the system's scalability by optimizing task

distribution and resource allocation. This may involve

incorporating advanced load-balancing techniques and

exploring more scalable infrastructure solutions. Research

into reducing the resource overhead associated with

container image management is planned. This could include

optimizing image creation processes and refining resource

allocation strategies to improve overall system efficiency.

In summary, while our proposed system significantly

improves the management and creation of customized

container images in HPC environments, there are areas for

further development. Addressing these limitations and

pursuing the outlined expansions will enhance the system's

robustness, efficiency, and user satisfaction, contributing to

the advancement of HPC capabilities and applications.

Reference

[1] Diogo R. Ferreira, and JET Contributors, “Using

HPC Infrastructures for Deep Learning Applications

in Fusion Research,” Plasma Physics and Controlled

Fusion, Vol 63., No. 8, 2021.

https://doi.org/10.1088/1361-6587/ac0a3b

[2] Estela Suarez, Norbert Eicker, Thomas Moschny,

Simon Pickartz, Carsten Clauss, Valentin Plugaru,

Andreas Herten, Kristel Michielsen, Thomas Lippert,

“Modular Supercomputing Architecture,” White

Paper of a Success Story of European R&D, 2022.

https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_

MSA_20220519.pdf

[3] I. Ali, A. Khan and M. Waleed, “A Google Colab

Based Online Platform for Rapid Estimation of Real

Blur in Single-Image Blind Deblurring,” 2020 12th

International Conference on Electronics, Computers

and Artificial Intelligence (ECAI), Bucharest,

Romania, pp. 1-6, 2020.

https://doi.org/10.1109/ECAI50035.2020.9223244.

[4] A. J. Younge, K. Pedretti, R. E. Grant and R.

Brightwell, “A Tale of Two Systems: Using

Containers to Deploy HPC Applications on

Supercomputers and Clouds,” 2017 IEEE

International Conference on Cloud Computing

Technology and Science (CloudCom), Hong Kong,

China, pp. 74-81, 2017.

https://doi.org/10.1109/CloudCom.2017.40.

[5] J. Hursey, “Design Considerations for Building and

Running Containerized MPI Applications,” 2020 2nd

International Workshop on Containers and New

Orchestration Paradigms for Isolated Environments in

HPC (CANOPIE-HPC), Atlanta, GA, USA, pp.

35-44, 2020.

https://doi.org/10.1109/CANOPIEHPC51917.2020.000

10.

[6] S. T. Singh, M. Tiwari and A. S. Dhar, “Machine

Learning based Workload Prediction for Auto-scaling

Cloud Applications,” 2022 OPJU International

Technology Conference on Emerging Technologies

for Sustainable Development (OTCON), Raigarh,

Chhattisgarh, India, pp. 1-6, 2023.

https://www.etp4hpc.eu/pujades/files/ETP4HPC_WP_MSA_20220519.pdf
https://doi.org/10.1109/CANOPIEHPC51917.2020.00010.

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

50 2024. 10

https://doi.org/10.1109/OTCON56053.2023.10114033.

[7] S. Brown, O. Johnson and A. Tassi, “Reliability of

Broadcast Communications Under Sparse Random

Linear Network Coding,” in IEEE Transactions on

Vehicular Technology, vol. 67, no. 5, pp. 4677-4682,

May 2018,

https://doi.org/10.1109/TVT.2018.2790436.

[8] M. Riedel et al., “Practice and Experience in using

Parallel and Scalable Machine Learning with

Heterogenous Modular Supercomputing Architectures,”

2021 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW),

Portland, OR, USA, pp. 76-85, 2021.

https://doi.org/10.1109/IPDPSW52791.2021.00019.

[9] F. Torres-Cruz et al., “Comparative Analysis of

High-Performance Computing Systems and Machine

Learning in Enhancing Cyber Infrastructure: A

Multiple Regression Analysis Approach,” 2022 2nd

International Conference on Innovative Practices in

Technology and Management (ICIPTM), Gautam

Buddha Nagar, India, pp. 69-73, 2022.

https://doi.org/10.1109/ICIPTM54933.2022.9753839.

[10] T. Ben-Nun, T. Gamblin, D. S. Hollman, H.

Krishnan and C. J. Newburn, “Workflows are the

New Applications: Challenges in Performance,

Portability, and Productivity,” 2020 IEEE/ACM

International Workshop on Performance, PortabiliMty

and Productivity in HPC (P3HPC), GA, USA, pp.

57-69, 2020.

https://doi.org/10.1109/P3HPC51967.2020.00011.

[11] S. Zhang, J. Lomeo, “Cloud-based Image Management

Solutions for Digital Transformation of Drug Product

Development,” Microscopy and Microanalysis, Vol.

27, No. S1, pp. 296-297, 2021.

https://doi.org/10.1017/S143192762100163X

[12] N. K. Pandey and M. Diwakar, “A Review on Cloud

based Image Processing Services,” 2020 7th

International Conference on Computing for

Sustainable Global Development (INDIACom), New

Delhi, India, pp. 108-112, 2020.

https://doi.org/10.23919/INDIACom49435.2020.9083718.

[13] P. Kanjanamek, N. Chaiyabud, N. Kitikhungumjon

and S. Fugkeaw, “An Adaptive Cloud-Based Image

Steganography System with Fast Stego Retrieval,”

2024 16th International Conference on Knowledge

and Smart Technology (KST), Krabi, Thailand, pp.

29-34, 2024.

https://doi.org/10.1109/KST61284.2024.10499672.

[14] A. Abdelmageed et al., “Cloud-Based AI-Enhanced

Dual-Mode System For Automatic Coronary Artery

Calcification Detection and Quantification,” 2024

41st National Radio Science Conference (NRSC),

New Damietta, Egypt, pp. 270-277, 2024.

https://doi.org/10.1109/NRSC61581.2024.10510468.

[15] Z. Wu, P. Ma, X. Zhang and G. Ye, “Efficient

Management and Processing of Massive InSAR

Images Using an HPC-Based Cloud Platform,” in

IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, vol. 17, pp.

2866-2876, 2024.

https://doi.org/10.1109/JSTARS.2023.3349214.

[16] J. Diaz, G. von Laszewski, F. Wang and G. Fox,

“Abstract Image Management and Universal Image

Registration for Cloud and HPC Infrastructures,”

2012 IEEE Fifth International Conference on Cloud

Computing, Honolulu, HI, USA, pp. 463-470, 2012.

https://doi.org/10.1109/CLOUD.2012.94.

[17] S. Takizawa, M. Shimizu, H. Nakada, H. Matsuba

and R. Takano, “CloudQ: A Secure AI / HPC Cloud

Bursting System,” 2022 IEEE/ACM International

Workshop on HPC User Support Tools (HUST),

Dallas, TX, USA, pp. 48-50, 2022.

https://doi.org/10.1109/HUST56722.2022.00012

[18] A. Zhiravetska, J. Chaiko, N. Kunicina and J.

Maksimkina, “Study Courses Digitalisation at RTU

On the Basis of HPC Platform and Combined

Learning Methodology,” 2023 IEEE 64th

International Scientific Conference on Power and

Electrical Engineering of Riga Technical University

(RTUCON), Riga, Latvia, pp. 1-6, 2023.

https://doi.org/10.1109/RTUCON60080.2023.10412966.

HPC 클러스터 기반 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더

한국 인터넷 정보학회 (25권5호) 51

◐ 저 자 소 개 ◑

이 국 화 (Gukhua Lee)

2011년 연변과학기술대학교 컴퓨터공학과(공학사)

2013년 건국대학교 일반대학원 신기술융합학과(공학석사)

2018년 건국대학교 일반대학원 신기술융합학과(공학박사)

2018년～2021년 한국과학기술정보연구원 슈퍼컴퓨팅인프라센터 박사후 연구원
2022년～현재 한국과학기술정보연구원 슈퍼컴퓨팅인프라센터 선임기술원
관심분야 : 슈퍼컴퓨팅, 고성능컴퓨팅, 클라우드 컴퓨팅, 데이터 사이언스, 데이터 분석, etc.

E-mail : ghlee@kisti.re.kr

우 준 (Joon Woo)

1998년 한남대학교 컴퓨터공학과(공학사)

2000년 한남대학교 대학원 컴퓨터공학과(공학석사)

2018년 충남대학교 대학원 컴퓨터공학과(공학박사)

2000년～현재 한국과학기술정보연구원 슈퍼컴퓨팅인프라센터 책임연구원
관심분야 : 슈퍼컴퓨팅, 고성능컴퓨팅, 서버 가상화, etc.

E-mail : wjnadia@kisti.re.kr

홍 태 영 (Taeyoung Hong)

1999년 성균관대학교 물리학과(학사)

2002년 성균관대학교 일반대학원 물리학과(이학석사)

2003년～현재 한국과학기술정보연구원 슈퍼컴퓨팅인프라센터 책임연구원
2019년～현재 한국과학기술정보연구원 슈퍼컴퓨팅인프라센터 센터장
관심분야 : 슈퍼컴퓨팅, 고성능컴퓨팅, 컴퓨터 아키텍처, 차세대 고성능 컴퓨터, etc.

E-mail : tyhong@kisti.re.kr

