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요    약

본 논문은 고성능컴퓨팅 환경에서 사용자 맞춤형 컨테이너 이미지를 관리하고 구축하기 위한 새로운 접근 방식을 소개하며, 

컴퓨팅 워크플로에서 유연성, 확장성 및 효율성에 대한 증가하는 요구사항 들을 해결하였다. 이 논문의 기여에는 컨테이너 기반 

고성능컴퓨팅 인프라 내에서 사용자 맞춤형 컨테이너 이미지 관리자 및 빌더의 개발과 통합이 포함된다. 이 시스템을 통해 사용
자는 맞춤화된 AI 서비스 플랫폼을 손쉽게 생성하고, 관리하고, 배포할 수 있어 필요한 패키지와 프레임워크를 구성하는 데 적은 

시간과 노력을 들일 수 있다. 논문에서 개발한 이미지 관리자는 여러 사용자 요청을 동시에 처리하여 컴퓨팅 노드에서 작동하는 

이미지 빌더에 작업을 효율적으로 분배할 수 있다. 이미지 빌더는 대기 중인 작업을 처리하고 실행 중인 인스턴스를 대상으로 
사용자 맞춤형 컨테이너 이미지를 생성하고, 이러한 이미지를 프라이빗 컨테이너 레지스트리에 저장하도록 설계되어 원활한 액

세스와 재사용성을 보장한다. 본 연구는 누리온 슈퍼컴퓨터와 뉴론 GPU 시스템을 포함한 고성능컴퓨팅 클러스터 기반 시스템에 

구현하여 시스템의 기능 효과를 검증하여 실제 서비스 환경에서 확장성과 상호 운용성을 입증하였다. 또한 본 논문에서는 기존 
컨테이너 기반 슈퍼컴퓨팅 프레임워크와의 원활한 통합을 보장하는 아키텍처와 메커니즘을 제안하여 리소스 활용을 최적화하고 

AI 서비스 플랫폼의 배포 복잡성을 줄이는 역할을 하였다. 

☞ 주제어 : 고성능컴퓨팅, 사용자 맞춤형 컨테이너 이미지, 이미지 관리자, 슈퍼컴퓨팅 환경 

ABSTRACT

This paper introduces a novel approach for managing and building customized container images in high-performance 

computing (HPC) environments, addressing the growing need for flexibility, scalability, and efficiency in computational workflows. 

Our contributions include the development and integration of a custom container image manager and builder within a 

container-based HPC infrastructure. This system enables users to effortlessly create, manage, and deploy personalized AI service 

platforms, significantly enhancing the user experience by reducing the time and effort required to configure essential packages 

and frameworks. The image manager we developed is capable of processing multiple user requests concurrently, distributing tasks 

efficiently to image builders operating on compute nodes. Meanwhile, the image builder is designed to handle queued tasks, 

generate customized container images based on active instances, and store these images in a private container registry, ensuring 

seamless access and reusability. We validated our system's effectiveness by implementing it on HPC cluster-based systems, including 

the Nurion supercomputer and the Neuron GPU system, demonstrating its scalability and interoperability in real-world environments. 

Additionally, we established an architecture and mechanism that ensures seamless integration with existing container-based 

supercomputing frameworks, underscoring our system's capability to optimize resource utilization and streamline the deployment of 

AI service platforms.

☞ keyword : High-performance computing, Customized container image, Image manager, Supercomputing environment 
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1. Introduction

The increasing demand for HPC in various fields such as 

scientific research, data-intensive applications, and AI 

Science and Technology Information (KISTI).  
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development has driven the evolution of computational 

environments [1,2]. Container technologies have emerged as 

a pivotal innovation, offering flexibility, portability, and 

efficiency in managing complex applications across diverse 

computing platforms. These technologies have significantly 

impacted HPC environments by enabling the encapsulation 

of applications and their dependencies into lightweight, 

portable units that can be executed consistently across 

different systems.

Containers provide a robust solution to the challenges 

posed by traditional HPC infrastructures, such as dependency 

management, resource allocation, and scalability. By 

isolating applications within containers, users can achieve 

reproducibility of computational experiments, streamline 

deployment processes, and optimize the utilization of HPC 

resources. As a result, containerization has become a key 

enabler for advancing HPC capabilities, particularly in areas 

requiring rapid iteration and deployment, such as AI and 

machine learning.

Various organizations, including the Jülich Supercomputing 

Center (JSC), Swiss National Supercomputing Center 

(CSCS), and National Energy Research Scientific Computing 

Center (NERSC), provide Jupyter services on supercomputers, 

and Google offers the Colab service [3] to its users. The 

foundational infrastructure configurations for these services 

are container-based [4]. However, these configurations pose 

the inconvenience of requiring users to install and configure 

essential packages and frameworks each time they access 

and execute the service using an initialized container image 

[5]. 

This paper introduces a novel approach to managing and 

building customized container images tailored for HPC 

environments. Our solution leverages (1) containerization to 

enhance the flexibility and efficiency of HPC workflows, (2) 

providing users with the ability to create, manage, and 

deploy personalized computational environments with ease. 

By integrating a sophisticated (3) image manager and (4) 

builder within a container-based HPC infrastructure, we aim 

to address the specific needs of HPC users, offering a 

scalable and user-friendly platform that optimizes resource 

utilization and streamlines the deployment of AI service 

platforms such as Jupyter and RStudio. 

In the following sections, we explore the existing 

research on containerization in HPC environments, 

comparing various approaches based on key aspects such as 

HPC integration, security, resource overhead, customization, 

ease of use, and user privileges in section 2. We then 

present the architecture of our proposed solution in section 

3, detailing the components and mechanisms that enable the 

efficient management and building of customized container 

images in an HPC context in section 4. Finally, we discuss 

the implementation of our system, highlighting its 

effectiveness and scalability in real-world HPC environments 

(a web-based portal called MyKSC) in section 5, and 

conclude with potential future enhancements to further 

improve its capabilities in the last section. The whole 

approach has been applied to KISTI-5 supercomputer, 

known as the CPU-only system Nurion, and the GPU 

system Neuron. 

2. Related Work 

The advent of container technologies has profoundly 

transformed the HPC landscape by offering efficient, 

portable, and scalable solutions for managing applications 

and resources. This section reviews existing research in HPC 

containerization, with a particular focus on customized 

container image management and building. Various 

approaches are compared based on their key features and 

capabilities. Table 1 presents a comparative analysis of 

different studies on containerization in HPC environments. 

The comparison is based on several critical aspects: HPC 

integration, security, resource overhead, customization, and 

ease of use, rated as High (H), Moderate (M), or Low (L), 

based on subjective evaluation. Additionally, root privilege 

requirements are indicated as either Yes or No.

① HPC Integration: This refers to the degree to which a 

solution is architected to operate efficiently within HPC 

environments. Effective HPC integration involves the 

optimization of computational resources and 

infrastructure, ensuring that the solution leverages the 

full capabilities of the HPC system.

② Security:Security encompasses the strategies and 

protocols implemented to safeguard data and applications 

within a solution. In the context of HPC, this is 
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particularly crucial for maintaining secure and reliable 

operations in environments with multiple users, where 

data integrity and access control are paramount.

③ Resource Overhead:Resource overhead refers to the 

additional computational or memory resources that a 

solution consumes. This factor is critical as it affects the 

overall efficiency and performance of the HPC system. 

Lower resource overhead typically leads to better 

utilization of the system's capabilities.

④ Customization: Customization reflects the extent to which 

a solution can be configured or tailored to meet specific 

user requirements. High levels of customization allow 

users to adapt the solution to a wide range of application 

needs, enhancing its applicability and usefulness in 

various scenarios.

⑤ Ease of Use:Ease of use is a measure of how accessible 

and user-friendly a solution is. This includes 

considerations such as the simplicity of its interface, the 

quality and availability of documentation, and the overall 

learning curve required for users to effectively operate 

the solution. Solutions that are easy to use are more 

likely to be widely adopted and successfully 

implemented.

⑥ User Privileges: This aspect addresses the access rights 

necessary to utilize or manage a solution. Specifically, it 

examines whether root (administrator) access is required, 

which has significant implications for both the security 

and flexibility of the solution. Solutions that do not 

require elevated privileges are often more secure and 

easier to deploy in diverse environments.

(Table 1) Feature comparison of related work

① ② ③ ④ ⑤ ⑥

[1] H H L H M No

[2] H H L H H No

[3] M M M H H Yes

[4] H H L M M No

[5-10] H H L H M No

[11-14] M M M H H Yes

[15-18] H H L H M No

Ours H M H H H No

Ferreira et al. [1], Suarez et al. [2], and several other 

works focus on the high integration of HPC environments 

with container technologies, ensuring that these solutions are 

secure, do not require root privileges, and have low resource 

overhead. These studies emphasize the need for extensive 

customization and high performance, which are crucial for 

demanding HPC applications like fusion research and deep 

learning.

Younge et al. [4] and Hursey [5] provide insights into 

container deployment on supercomputers and clouds, 

highlighting the performance benefits and security 

considerations of containerized HPC applications. These 

works underline the importance of user privileges and 

resource efficiency. Singh, Tiwari and Dhar [6], Brown 

and Johnson [7], and [9] focus on enhancing the 

performance of machine learning workloads and deep learning 

applications on HPC systems. They emphasize the necessity 

for optimized container images and high-performance 

execution. 

Ali et al. [3], Zhang and Lomeo [11], and Pandey and 

Diwakar [12] explore cloud-based solutions, which, while 

powerful, often require root privileges and may introduce 

moderate resource overhead. These solutions are highly 

customizable and user-friendly, making them suitable for 

rapid deployment and real-time processing tasks. Ben-Nun 

[10] and Wu et al.[15] discuss optimizing containerized 

workflows and managing massive datasets, respectively. 

These studies highlight the integration of container 

technologies in HPC for improved performance and resource 

management.  

Diaz et al. [16] and Takizawa et al. [17] provide early 

and recent perspectives on cloud and HPC integration using 

containerization. They focus on the secure and scalable 

deployment of applications, ensuring high performance and 

ease of use. Zhiravetska et al. [18] illustrate the application 

of HPC containerization in educational contexts, showcasing 

how containerized environments can enhance learning and 

research. 

The comparative analysis reveals that while several 

solutions and research works have made significant strides in 

integrating container technologies with HPC, they vary in 

their approach to security, customization, and ease of use. 

The proposed "HPC Cluster-based Customized Container 

Image Manager and Builder" aims to leverage the best 

practices identified in these studies to offer a comprehensive, 
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efficient, and secure solution tailored for HPC environments.

3. Architecture 

The service architecture depicted in Figure 1 illustrates 

the framework for delivering tailored AI service platforms, 

namely Jupyter and RStudio, via MyKSC, leveraging both 

an image manager and image builder. Our objective is to 

establish a cohesive architecture and mechanism within a 

container-based HPC environment. 

(Figure 1) The overall service architecture

Our architecture operates within a container-based HPC 

environment, ensuring flexibility, scalability, and reproducibility 

of computational tasks. By encapsulating each service within 

a container, we facilitate seamless deployment and 

management of AI platforms while maintaining consistent 

runtime environments.

The image manager serves as a crucial component, 

orchestrating communication between the image builder and 

the MyKSC Hub. It functions as a centralized control point, 

responsible for coordinating the creation, storage, and 

distribution of container images. Leveraging Docker Private 

Registry as the underlying infrastructure, the image manager 

streamlines the management of containerized services.

At the heart of our architecture lies the MyKSC Hub, a 

comprehensive platform designed to host and administer AI 

services. Built upon the foundation of Docker Private 

Registry, the MyKSC Hub serves as a secure and efficient 

repository for storing container images. It provides users 

with seamless access to Jupyter and RStudio environments, 

enabling them to leverage advanced AI capabilities for their 

research and development tasks. 

Our architecture embodies an integrated mechanism that 

harmonizes the functionalities of various components to 

deliver a cohesive AI service platform. The orchestrated 

interplay between the image manager, image builder, and 

MyKSC Hub ensures smooth operation and optimal 

performance of the customized AI environments. Users can 

effortlessly deploy, manage, and interact with Jupyter and 

RStudio instances, thereby enhancing their productivity and 

computational workflows.

By embracing containerization within a container-based 

HPC environment, coupled with a sophisticated architecture 

comprising the image manager and MyKSC Hub, we 

establish a robust foundation for delivering customized AI 

service platforms. This integrated approach not only 

simplifies the deployment process but also enhances the 

overall user experience, empowering researchers and 

practitioners to harness the full potential of AI technologies 

for their diverse endeavors. 

3.1 Image Manager

Figure 2 illustrates the pivotal role of the image manager 

in bolstering processing efficiency within the system. By 

integrating a task queue mechanism, the image manager 

optimizes the handling of image-saving requests, enabling 

concurrent processing from multiple users in a distributed 

environment across the HPC cluster-based system.

(Figure 2) Image manager and builder architecture

The task queue mechanism embedded within the image 

manager facilitates the efficient processing of image-saving 

requests. Through distributed and parallel processing 

techniques, tasks are systematically queued and executed, 

ensuring optimal resource utilization and minimizing latency. 
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This approach enhances system throughput and responsiveness, 

thereby accommodating the demands of concurrent users 

seamlessly. 

At the core of the image manager lies a RESTful API, 

developed using Flask, a lightweight web framework for 

Python. This API serves as the interface for processing 

requests originating from the web portal, providing a 

standardized and accessible means for users to interact with 

the system. By adhering to REST principles, the API 

promotes modularity, scalability, and interoperability, 

facilitating seamless integration with other system 

components.

To delegate tasks to the image builder residing on 

compute nodes, the image manager leverages a Redis 

message broker. Redis, renowned for its high-performance 

and low-latency characteristics, serves as the intermediary 

for transmitting task-related messages between the image 

manager and compute nodes. This decoupled architecture 

enhances system reliability and scalability, enabling efficient 

task distribution and management across the distributed 

environment.

Furthermore, the image manager incorporates functionality 

for monitoring and recording the status of image processing 

tasks in a dedicated database. By maintaining a 

comprehensive record of task execution, including status 

updates and completion notifications, the system ensures 

transparency and accountability throughout the image-saving 

process. Users can track the progress of their requests in 

real-time, fostering trust and confidence in the system's 

performance and reliability.

Through the seamless integration of task queueing 

mechanisms, RESTful API services, Redis message 

brokering, and database-driven status tracking, the image 

manager serves as a cornerstone for enhancing processing 

efficiency and user experience within the system. By 

orchestrating distributed and parallel processing of image-saving 

requests, the image manager empowers the system to handle 

concurrent user demands effectively, thereby optimizing 

resource utilization and system responsiveness.

3.2 Image Builder

The image builder plays a pivotal role in the system's 

architecture, executing user requests received from the image 

manager with the aid of the Celery framework. This 

component is responsible for a series of intricate tasks aimed 

at transforming a running container into a reusable container 

image, facilitating seamless deployment and sharing across 

the system. 

Utilizing the Celery distributed task queue framework, the 

image builder efficiently processes user requests in an 

asynchronous and distributed manner. Celery orchestrates 

task execution across compute nodes, enabling parallel 

processing and load balancing to maximize system 

throughput and responsiveness. This distributed architecture 

enhances scalability and fault tolerance, ensuring robust 

performance under varying workload conditions. 

(Figure 3) Image builder flowchart

As shown in Figure 3, the primary task of the image 

builder revolves around the transformation of a running 

container into a container image. This process involves 

capturing the current state of the container, including its file 

system, configuration, and dependencies, and encapsulating it 

into a portable image format. Once the image creation 

process is complete, the image builder orchestrates the 

transfer of the newly created image to the designated 
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container registry, namely the MyKSC Hub. This private 

registry serves as a centralized repository for storing and 

managing container images, providing secure and efficient 

access to users across the system.

In addition to image creation and transfer, the image 

builder is tasked with maintaining comprehensive records of 

image processing tasks in the system's database. By logging 

essential metadata, such as task status, completion 

timestamps, and associated user information, the image 

builder ensures transparency and accountability throughout 

the image-building process. This record-keeping functionality 

enables users to track the progress of their requests and 

retrieve relevant information regarding completed tasks, 

fostering trust and confidence in the system's operations.

Installed on each compute node within the HPC cluster, 

the image builder is meticulously configured to handle 

multiple tasks concurrently, leveraging the available 

computational resources efficiently. Furthermore, the image 

builder's architecture is designed to adapt dynamically to 

fluctuations in resource utilization, allowing for seamless 

scalability and resource allocation based on workload 

demands. This dynamic expansion capability ensures optimal 

utilization of compute resources while maintaining 

responsiveness and performance across the system. 

The image builder serves as a critical component in the 

system's architecture, orchestrating the transformation of 

running containers into reusable container images with 

precision and efficiency. Through its integration with the 

Celery framework, coupled with robust task execution 

capabilities, the image builder empowers the system to 

handle diverse user requests seamlessly. By facilitating 

image creation, transfer, and database record maintenance, 

the image builder enhances system reliability, scalability, and 

user experience, laying the foundation for efficient 

containerized workflows within the HPC environment.

4. Implementation 

4.1 Integration Components 

Within the AI services, every application runs as a 

Kubernetes-based service pod. We created a designed image 

manager and builder for RStudio and Jupyter pods. The six 

components of the workflow were used to construct the 

integration architecture using Kubernetes, as shown in Figure 

4. The integration workflow outlined above illustrates the 

orchestrated interaction between users, Kubernetes container 

management, and specialized components for image 

management and customization. By leveraging Kubernetes' 

capabilities alongside custom-built image management 

components, users benefit from a seamless and flexible 

environment for developing and deploying AI applications 

within the Kubernetes cluster. 

(Figure 4) Integration components workflow

① Users interact with the container manager, which in 

this case is Kubernetes, to submit requests for creating 

service applications, such as Jupyter and RStudio. 

Kubernetes is a container orchestration platform that 

automates the deployment, scaling, and management of 

containerized applications.   

② The container manager utilizes pre-configured YAML 

scripts to deploy pods for the requested service applications. 

A pod is the smallest deployable unit in Kubernetes and 

comprises one or more containers that share resources and 

network space.

③ Once the pods for Jupyter or RStudio are deployed, 

users can access them and install the necessary AI model 

packages or libraries directly into the service pods 

(containers). This allows users to customize their 

development environment according to their specific 

requirements.

④ After configuring the development environment within 

the service pods, users can utilize the MyKSC portal to 

submit a request to the image manager to save the current 
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environment. This request is sent via the portal in multiple 

formats, including the JSON data format. The image 

manager processes these requests and sends them to the 

image builder component that runs on a specific node within 

the Kubernetes cluster.

⑤ Upon receiving commands from the image manager, 

the image builder uses the NERDCTL tool to commit the 

running container to a customized image. NERDCTL is a 

command-line interface that manages container images and 

containers. Once customization is complete, the customized 

image is uploaded to the MyKSC Hub, which serves as a 

repository for storing and managing container images within 

the Kubernetes cluster.

⑥ Users can then access and manage their customized 

images through the MyKSC portal. This portal provides a 

user-friendly interface for viewing and managing container 

images, allowing users to easily track and utilize their 

customized development environments as required.

4.2 Functional Components 

The backend of the web portal was integrated with four 

functions (shown in Figure 5). The SAVE function makes it 

easier to send user data and the required parameter values in 

JSON data format to the image manager. The state of the 

image processing was continuously observed using the CHK 

function. Depending on the resource type, the images were 

divided into GPU and CPU categories. App.py contains the 

code for the SAVE and CHK functions, which use Flask, 

Celery, and Redis. Tasks.py defines the tasks for every 

builder in app.py. The Harbor API is used by the LIST and 

DEL functions to list user images and make it possible to 

delete each user image.

(Figure 5) Functional components workflow

The SAVE function simplifies the process of transmitting 

user data and required parameter values to the image 

manager by encapsulating them in JSON data format. This 

function enhances user experience by providing a 

streamlined interface for submitting requests to the image 

manager component. Users can effortlessly specify their 

customization preferences and submit them to initiate the 

image processing workflow.

The CHK function continuously monitors the state of 

image processing, providing real-time feedback to users 

regarding the progress and status of their requests. By 

actively observing the image processing workflow, users can 

stay informed about the completion status and any potential 

errors or issues encountered during the process. This 

proactive monitoring capability enhances transparency and 

user engagement, ensuring a seamless experience throughout 

the image customization process.

Depending on the resource requirements of users, the 

images generated by the system are categorized into GPU 

and CPU categories. This classification enables users to 

select and deploy customized images tailored to their 

specific computational needs. By offering distinct categories 

based on resource types, the system ensures optimal 

utilization of available computing resources and 

accommodates diverse user preferences and requirements

The backend functionalities, including the SAVE and 

CHK functions, are implemented within the app.py file using 

Flask, Celery, and Redis. Flask serves as the web framework 

for building the web portal's backend, providing tools and 

utilities for handling HTTP requests and responses. Celery, a 

distributed task queue framework, facilitates asynchronous 

task execution, enabling efficient processing of image 

customization requests. Redis, acting as the message broker, 

facilitates communication between Flask and Celery, 

ensuring reliable task dispatch and execution.

Additionally, the tasks.py file defines the tasks associated 

with each builder component, complementing the 

functionalities implemented in app.py. This modular 

approach enhances code organization and maintainability, 

facilitating scalability and extensibility of the backend 

system.

The LIST and DEL functions leverage the Harbor API to 

list user images and enable the deletion of individual user 
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images, respectively. Harbor, a cloud-native registry for 

storing, signing, and scanning container images, provides a 

robust API for interacting with container images stored 

within the repository. By integrating with the Harbor API, 

the web portal enables users to manage their customized 

images efficiently, including listing available images and 

performing deletion operations as needed.

The integration of backend functions within the web 

portal enhances user interaction and facilitates efficient 

management of image customization tasks. By leveraging 

Flask, Celery, Redis, and the Harbor API, the backend 

system offers a seamless experience for submitting, 

monitoring, and managing image processing requests. This 

integrated approach ensures reliability, scalability, and 

flexibility, empowering users to customize and deploy AI 

environments tailored to their specific needs and preferences.

4.3 Experimental Result 

To enhance user convenience and streamline the image 

creation process, we have integrated several user-friendly 

features into our web portal:

One-Button Image Creation: We have introduced a 

one-button function on our web portal designed to simplify 

the process of creating customized images. This feature 

allows users to generate images of their current environment 

with just a single click. By minimizing the number of steps 

required, we aim to make image creation more accessible 

and efficient for all users. This functionality is illustrated in 

Figure 6.

(Figure 6) User interface of image save button

Real-Time Progress Monitoring: As users initiate the 

image creation process, they can easily track its progress 

through a visual processing bar displayed on the web 

interface. This progress bar provides real-time updates, 

showing how far along the image creation process is and 

allowing users to stay informed about the status of their 

request. This feature ensures users are aware of the ongoing 

process and can anticipate when their image will be ready. 

The processing bar is depicted in Figure 7.

(Figure 7) User interface of image process

Image Management Interface: Once the image creation 

is complete, users can access a comprehensive management 

interface on the web portal to view and handle their created 

images. This interface presents a list of all images associated 

with the user account, allowing users to easily organize, 

review, and manage their images. The management 

functionality is designed to be straight forward and intuitive, 

providing users with control over their image assets. This 

aspect of the portal is shown in Figure 8.

(Figure 8) User interface of customized image list

5. Conclusion 

In this paper, we introduced a novel approach for 

managing and creating customized container images within 
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HPC environments. Our solution integrates a sophisticated 

image manager and builder into a container-based HPC 

infrastructure, addressing key needs for flexibility, 

scalability, and efficiency in computational workflows. The 

implemented system facilitates the effortless creation, 

management, and deployment of personalized AI service 

platforms, optimizing the user experience by minimizing the 

manual configuration of essential packages and frameworks. 

Validation on real-world HPC systems, including the Nurion 

supercomputer and the Neuron GPU system, demonstrates 

the solution's effectiveness, scalability, and seamless 

integration with existing frameworks. Meanwhile, our 

experimental result has following limitations: 

Scalability Constraints: Although our system performs 

well under current conditions, its scalability may be limited 

by the capacity of the underlying compute nodes and 

network infrastructure. As user demand grows, further 

enhancements may be required to maintain performance and 

responsiveness. 

Resource Overhead: While the system optimizes 

resource utilization, the process of creating and managing 

container images still incurs some level of resource 

overhead. This overhead could impact performance in highly 

resource-constrained environments.

According to these limitations, future work will focus on 

enhancing the system's scalability by optimizing task 

distribution and resource allocation. This may involve 

incorporating advanced load-balancing techniques and 

exploring more scalable infrastructure solutions. Research 

into reducing the resource overhead associated with 

container image management is planned. This could include 

optimizing image creation processes and refining resource 

allocation strategies to improve overall system efficiency. 

In summary, while our proposed system significantly 

improves the management and creation of customized 

container images in HPC environments, there are areas for 

further development. Addressing these limitations and 

pursuing the outlined expansions will enhance the system's 

robustness, efficiency, and user satisfaction, contributing to 

the advancement of HPC capabilities and applications.
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