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Abstract 

 
The previous graph-based estimation algorithm is of poor performance in low signal-to-noise 
ratio (SNR) and is failure for frequency band signals. An improved graph-based SNR estimator 
using blocking sum of spectrum of the observed signal is proposed in this article, which 
consists of two stages: fitting the SNR estimation expression by training samples and 
estimating the SNR of the test signal. In the former stage, the training samples are firstly 
segmented with overlap, then the real part of the spectrum of each segment is blocked without 
overlap and summed to be transformed to a graph, and accordingly the average degree sum 
(DS) of the graphs is calculated. Afterwards, a nonlinear fitting of the relationship between the 
average DS and the SNR is obtained using a trust region fitting algorithm. In the latter stage, 
the average DS of the test signal is obtained by applying the mentioned scheme. Subsequently, 
substitute it into the fitted expression to estimate the SNR. Moreover, we analyze the impact 
mechanism of the order preserving between the majorization order of input samples and the 
majorization order of vertex probability vectors, which providing a basis for the 
interpretability of graph-based SNR estimator and for the selection of input forms for graph 
transform in the estimation. Simulation results demonstrate that the proposed algorithm has a 
superiority performance for both baseband and frequency band signals under low SNR and 
multipath or fading channels, with a computational complexity of approximately 50% 
compared to the existing graph-based algorithm. 
 
 
Keywords: SNR estimation, Signal to graph convertor, Majorization order, Order-
preserving, Normalized root mean square error, Deflection coefficient 
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1. Introduction 

Signal-to-noise ratio (SNR) is a key parameter used to measure the relative strength 
relationship between a signal and noise [1]. In wireless communication signal processing and 
radar signal processing aspects, the SNR estimation has wide applications in communication 
system performance evaluation [2], channel estimation [3], signal detection and demodulation 
[4], radar target detection and tracking [5], and so on. Generally, SNR estimation algorithm 
can be broadly categorized into two types: model-driven-based and data-driven-based. Model-
driven-based algorithm mainly utilizes the statistical characteristics of signals, such as 
maximum likelihood estimation [6], higher-order cumulant-based [7], and eigen-
decomposition of matrix methods [8]. However, these methods only utilize the statistical 
characteristics of the signal and do not further explore the correlation information between 
samples, namely the topological characteristics [9], which limits their estimation performance 
in a certain sense. With the widespread application of artificial intelligence and neural 
networks in wireless communication signal processing, data-driven-based have also been 
widely used, especially deep learning frameworks [10], which is showing promising 
estimation performance. However, it is evident that these algorithms require a large number of 
labeled samples and are prone to problems such as overfitting during training. In general, to 
investigate a novel SNR estimation framework using new features, such as graphical features, 
and less training samples is a crucial issue. Characteristics and comparison of various existing 
SNR estimation algorithms are listed in Table 1 as below. 
 

Table 1. Characteristics and comparison of various existing SNR estimation algorithms 
Paper Main idea Advantages Disadvantages 

[6] 

ML-based method: A maximum 
likelihood SNR estimator for coded 

linearly modulated signals is 
proposed. The estimator is 

expressed in terms of the marginal a 
posterior probabilities of the coded 

symbols. 

It performs well in low 
SNR regime by 

exploiting channel 
coding characteristics, 
and its performance is 

very close to the Cramer-
Rao bound. 

It requires prior 
signal information 

and the 
computational 

complexity is high. 

[7] 

M2M4-based method: The SNR 
estimate is calculated by computing 

the second and fourth-order 
moments of the received signal 

based on its average time. 

It is no need to know the 
modulation method of 
the transmitted signal, 

and the receiver does not 
need to recover the phase 

information. 

The estimation 
performance worsens 

as the SNR value 
increases. 

[8] 

SVD-based method: Singular 
value decomposition technology is 

utilized to process the matrix 
construction called covariance, or 

Hankel matrix of the signal to 
estimate the dimensions of the 

signal and noise subspaces, thereby 
calculating the SNR. 

It does not require prior 
information, and is 

suitable for blind signal 
processing. 

When the dimension 
of the matrix is large, 

the computational 
complexity is high. 

[11] 

Graph sparsity-based method: A 
blind SNR estimation method based 

on graph sparsity is proposed. By 
converting the original signal into a 
graph, the SNR is estimated using 

the sparsity of the final graph. 

It is robustness to 
multipath channel, noise 
distributions, and small 

sample size. 

It is not suitable for 
frequency band 

signals. 
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Recently, graph signal processing methods have achieved encouraging results in signal 
detection [12, 13], modulation recognition [14-16], and credibility evaluation of blind 
processing results [17]. Generally speaking, this method transforms time series into graphs 
composed of vertices and edges through normalization, quantization, and graph mapping, fully 
exploring the potential structural information of the signal. Nevertheless, the application of 
graph transformation in parameter estimation is still rare, because the quantization process in 
graph transformation improves the algorithm’s resistance to interference, but sacrifices the 
information of the signal at small scales. In [11], graph signal processing method is applied to 
SNR estimation of communication signals for the first time. In this article, the algorithm is 
mainly based on graph transformation of time-domain signals and can be divided into two 
stages. In the first stage, the real part of the time-domain signal is segmented with overlapping, 
then the graph transformation is performed segment by segment to obtain the mean value of 
the sum of adjacency matrixes of each graph, which is defined as the graph sparsity (GS). As 
a result, an expression for SNR estimation based on the functional mapping from GS to SNR 
is fitted. In the second stage, for a given test signal, the GS is calculated using the above 
method, and is substituted into the SNR estimation expression to estimate the SNR. This article 
provides a new approach for graph-based parameter estimation, whereas it still has the 
following problems: 1) Even though a functional mapping from GS to the SNR is established, 
it does not further discuss the inherent mechanism of the mapping from the graph domain to 
the parameter domain. The necessary conditions for holding this mapping, and the criterion to 
choose the input to graph transform to obtain more favorable performance to establish this 
functional mapping have not been rigorously analyzed either theoretically or experimentally. 
2) The graph-based SNR estimation problem of the baseband signal is discussed, but its 
effectiveness for the frequency band signals is not verified. As we know, in practical signal 
processing, parameter estimation of frequency band signal that has not been demodulated may 
be more important. By simulations, we further found that for frequency band signals, there is 
a non-monotonic mapping from the GS to the SNR, which leads to ambiguous performance of 
the graph-based SNR estimator. 3) The computational complexity is relatively high, which is 
approximately proportional to 2( )ml mlΟ + , where m  represents the number of segments, and 
l  represents the length of each segmented samples. 

To solve the above mentioned questions, we propose a graph-based SNR estimation 
algorithm based on blocking sum of spectrum (SBS). The basic idea is as follows: In the initial 
stage, the training signal is segmented with overlapping. For each segment, the real parts of 
the spectrum of the signals are calculated, and then the SBS of them are transformed into 
graphs to obtain the the degree sum (DS). Once the DS is obtained for each graph, the average 
DS is computed. Using the average DS, an expression for SNR estimation is fitted by several 
training signals. In the second stage, the test signal undergoes the same steps as described 
above to calculate the average DS, and this value is then substituted into the obtained SNR 
estimation expression to estimate the SNR of the test signal. Overall, the SBS can reduce the 
computational complexity of the algorithm by means of decreasing the number of input 
samples for graph transform. Simulation experiments demonstrate that the proposed algorithm 
performs well in low SNRs and multipath or fading channels for both bandpass signals and 
frequency band signals, and the computational complexity is approximately 50% of the 
existing graph domain algorithm. 

The main contributions of this paper are as follows: 
1) Considering the graph transformation of the constant plus Gaussian white noise model as 

an example, we analyze the relationships between the majorization order of vertex probability 
vectors (VPVs), and the DS of graph under different noise variance. Then, the sufficient 
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condition for the preserving of the majorization order of VPVs is provided. 
2) The ratio of the number of order-preserving for the majorization order of VPVs to the 

total number of simulations is defined as the order-preserving rate (OPR). Afterwards, the 
relationships among OPR, the DS and deflection coefficients are investigated, which provide 
a basis for the selection of the form of the input signals of the graph transformation in SNR 
estimation in the graph-domain. 

3) A graph-based SNR estimation method based on SBS is proposed, and the performance 
is evaluated under different operating conditions and signal parameters to verify its 
effectiveness. Meanwhile, the proposed algorithm is compared with the existing graph-based 
SNR estimation algorithm, the traditional M2M4-based method and SVD-based method in 
terms of estimation performance and computational complexity to verify its superiority. 

This paper is organized as follows. Section Ⅱ introduces the signal model, the related 
background of graph-domain signal processing and the definition of several important terms 
involved in the article. Section Ⅲ analyzes the limitations of the existing graph-based SNR 
algorithm, derives the proposed algorithm, and analyzes its computational complexity. The 
simulation performance analysis and comparisons with other algorithms are provided in 
Section Ⅳ. Section Ⅴ concludes this article. 

2. Signal model and background 

2.1 Signal model 
Assuming the observed signal is a frequency band signal with additive Gaussian white noise 
(AGWN), it can be expressed as: 

0( ) ( ) ( ) ( ) exp( [2 ( ) ]) ( ) ( ),0 1x n s n c n w n A j f n t d n c n w n n Nπ π θ= × + = ∆ + + × + ≤ ≤ −        (1) 
where ( )x n   is the observed signal, ( )s n   is the frequency band signal, A   is the signal 
amplitude, N  is the length of the signal samples, 0f  is the signal carrier frequency, t∆  is the 
sampling interval, θ  is the initial phase of the signal, and ( )d n  is the phase encoding function, 

( )w n  is the zero-mean AGWN with independent real and imaginary parts, and the variance 
2
02σ , and ( )c n  denotes the channel gain defined by: 

1
( ) ( )

D

c n h nδ κ
=

= −∑
 



,                                                       (2) 

where D  is the channel order, h


 is the gain of the th  channel, and κ


 is the delay of the th  
channel. When a single channel with no attenuation and no delay is considered, the expression 
for the SNR is given by [11]: 

2

2

P( ( ) )

P( ( ) )

s n

w n
Γ = ,                                                       (3) 

where 2P( ( ) )s n  is the average power of the signal, 2P( ( ) )w n  is the average power of the noise, 
and the logarithm form of SNR is computed by 10[dB] 10logβ = Γ . 

2.2 Graph transformation 
According to [12], let the signal denote as ( )X k  with length L  , the corresponding graph 
structure can be obtained through the following three steps for a given signal. 

1) Normalization: find the maximum and minimum values of ( )X k , and map all samples to 
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the interval [0,1] using the following equation: 
min

max min

( )( ) ,1X kY k k Lω
ω ω

−
= ≤ ≤

−
,                                                 (4) 

where ( )Y k  is the normalized sequence, maxω  and minω  are the maximum and minimum values 
of ( )X k , respectively. 

2) Quantization: set the quantization levels as 0N , and quantize ( )Y k  with equal intervals: 

0
0 0

1( ) 1, ( ) 0 1z zU k z Y k z N
N N

+
= + < < ≤ ≤ −， ,                                     (5) 

where ( )U k  is the quantized sequence, 0N  is the number of quantization levels. 
3) Graph mapping: map ( )U k  to a simple graph ( ),G E V= , where ,{ | , }i j i jE e V Vν ν= ∈ ∈  

and { }01 2, ,..., NV v v v=  represent the edge and vertex sets of the graph G , respectively. The map 
scheme is as follows: By Iterating from ( )U k  to ( +1)U k , and checking whether there is a level 
transition from iv   to jv  , if there is a connection between the two vertices, then , 1i je =   ; 
otherwise, , 0i je = . 

2.3 Several important definitions 
Definition 1 Vertex probability vector (VPV) [18]. Let 

01 2, ,..., )p ( T
Np p p= ，

01 2( , ,..., )q T
Nq q q=  

be VPV on pG  and qG , respectively, and can be expressed by 

0( ) / , 1, 2...,pi ip I G L i N= = ,                                                (6) 

0( ) / , 1, 2...,qi iq I G L i N= = ,                                                (7) 
where ( )piI G  is the number of edges of the thi  vertex of Graph pG ， ( )qiI G  is the number of 
edges of the thi  vertex of Graph qG . 

According to [13, 17], for two independent and identically distributed (I.I.D.) random 
sequences being transformed to the graphs, their VPVs directly affect the connectivity of the 
corresponding generated graphs. The more uniform the distribution of the VPV, the stronger 
the connectivity of the generated graph. Hence, when the number of samples and the number 
of quantization levels are fixed, the strength of the connectivity of the two graphs can be 
compared by examining the uniformity of the corresponding VPV. 

Definition 2 Majorization order between two different VPVs. 

p 01 [ ]
,1 ,

i i
S p i j N

Ω

Ω

=
= ≤ ≤ Ω ≤∑                                                        (8) 

and 
q 01 [ ]

,1 ,
j j

S q i j N
Ω

Ω

=
= ≤ ≤ Ω ≤∑                                                       (9) 

are the partial sums of VPVs, i.e., p  and q，where [ ]ip  and [ ]jq  is the element of the non-
increasing rearrangement. If p qS S

Ω Ω
< ，then p  ≺ q   holds，which is referred to as p   is 

majorized by q，indicating that the uniformity of p  is greater than q . 
Definition 3 Majorization order of the continuous random variables [19]. Let 1X ， 2X  be 

the continuous random variables with probability density functions (PDF) denoted as ( )f x  
and ( )g x . For any value of 0t > , it holds that 
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                       * *

0 0
( ) ( )

t t
g x dx f x dx≤∫ ∫ .                                                   (10) 

In this case, we say that ( )g x  is majorized by ( )f x , denoted as g ≺ f . In (10), * ( )f x , * ( )g x  
are the non-increasing rearrangement functions of ( )f x  and ( )g x  , respectively, i.e., 

*

( )
( ) sup , 0

b x
f x b x

µ >
= ≥  and { }( ) : ( )b x f x bµ µ= > , where µ  is the Lebesgue measure and sup( )b  

denotes the supremum of b . 
Example: If two random variables are both Gaussian distributed continuous random 

variables, their majorization order is described as follows. Assuming 1W  and 2W  be I.I.D zero-
mean Gaussian random variables, i.e., ( )2

1 1~ 0,W N σ   and ( )2
2 2~ 0,W N σ  , 2 2

1 2σ σ>  , and 
accordingly, their PDFs are 

1
( )Wf x 和

2
( )Wf x ,then it follows: 

1
( )Wf x ≺

2
( )Wf x ,                                                              (11) 

which means 
1
( )Wf x  is majorized by 

2
( )Wf x , i.e., the distribution of 1W  is more uniform than 

2W . It can be deduced that when the time continuous random variables both follow Gaussian 
distributions, the majorization order can be uniquely determined by their variances. Therefore, 
the variance can be considered as the uncertainty parameter of Gaussian random variables [19]. 

Remarks: 1) It should be noted that the VPV is fundamentally the area sampling of the 
normalized PDF of a random variable [20], which is approximately the same as the PDF of 
quantized samples. Therefore, the majorization order of VPVs is essentially determined by the 
majorization order of the original continuous random variables. 2) For the convenience of 
expression in the successive parts of the article, the majorization order of input sample 
distribution will be referred to as the input majorization order, the majorization order of 
normalized sample distribution will be referred to as the normalization majorization order, and 
the majorization order of VPV will be referred to as quantization majorization order. It is worth 
noting that, due to the random nature of maximum and minimum of the random samples 
utilized in (4), the input majorization order and normalization majorization order may not be 
the same, i.e., non order-preserving. If the quantization majorization order and normalization 
majorization order are the same, we call it “order-preserving”. 

3. Algorithm principle 

3.1 Limitations of the existing graph-based SNR estimation algorithm 
As mentioned in [11], the accurate estimation of the SNR can be realized by constructing the 
GS structure using a small sample size. Meanwhile, it is stated in the paper that the GS 
represents the strength of the connectivity of the graph and also reflects the correlation between 
the input samples of the graph. However, there are the following problems: 

1) The instinct mechanism of the correspondence between the GS and the SNR is not 
clarified in detail, i.e., the reason that the smaller SNR is corresponding to the larger GS, 
whereas the larger SNR is corresponding to the smaller GS. 

2) Without providing the method to improve the robustness of the mapping relationship 
between GS and SNR through appropriate preprocessing and the criterion to select the more 
effective input form fed to graph transformation. 

3.2 Majorization orders involved in different input samples 
Intuitively, the factors affecting the graph-based SNR estimation performance can be 
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considered from two aspects: the input samples for graph transformation and the connectivity 
of the generated graph. 

From the perspective of input of graph transformation, the uniformity of the input sample 
distribution is an important factor affecting the connectivity of the generated graph. Clearly, 
the input samples need to be normalized and quantized before being transformed into graph. 
According to [17], the connectivity of the graph is primarily determined by the uniformity of 
its VPV. Normalization is a linear transformation applied to the original input samples, but the 
slope of the linear transformation is a random variable, and the uniformity of its distribution 
may change randomly. On the other hand, quantization does not change the uniformity of the 
normalized sample distribution. Therefore, order-preserving between the input majorization 
order and the quantization majorization order should be evaluated. Order-preserving implies 
that there is a consistent relationship between the uniformity of the input samples and the 
connectivity of the corresponding generated graphs. In other words, increasing the uniformity 
of the input samples results in increase of connectivity of the generated graph. Hence, it is 
desirable to obtain order-preserving or high OPR between the input majorization order, the 
normalized majorization order and the quantized majorization order. This ensures a consistent 
relationship between the uniformity of the input samples for graph transformation and the 
connectivity of the generated graphs, hence improving the performance of the SNR estimation 
using graphs. 

Theorem 1 (Sufficient Condition for order-preserving of majorization order). Let us 
suppose two continuous random variables of I.I.D. Gaussian distribution, i.e., 1 1X R W= +  and 

2 2X R W= + , with their PDF denoted by 
1
( )Xf x  and 

2
( )Xf x , where R  is a real constant. Their 

SNRs can be obtained by 2 2
1 1Rγ σ=  and 2 2

2 2Rγ σ= , respectively. If we normalize 1X  and 

2X , as 1
NX  and 2

NX , respectively, i.e., 1
1 1 1 1

NX c X e−= − , 1
2 2 2 2

NX c X e−= − , and their 

corresponding VPVs are denoted as p  and q , where max minic ω ω= − ， min

max min
ie ω

ω ω
=

−
. If 

2 2
1 2σ σ> ，and 1 1 2 2c d c d< , it follows 

1
( )Xf x ≺

2
( )Xf x , and p ≺ q , where * (0), 1, 2

ii Xd f i= =  and 
* (0)

iXf denotes the value of non-increasing arrangement of ( )
iXf x  when 0x = . 

Proof. According to [19, 21], because ( )2
1 1~ ,X N R σ  and ( )2

2 2~ ,X N R σ , when 2 2
1 2σ σ> ， 

it follows 
1
( )Xf x ≺

2
( )Xf x . Furthermore, according to [17], when 1 1 2 2c d c d< , it follows p ≺ q . 

Remarks: Theorem 1 states that when the input samples of graph transformation are the 
constants with AGWN with different variances, if 1 1 2 2c d c d< , the order-preserving occurs 
between the quantization majorization order and the input majorization order. However, 

1 1 2 2c d c d<  is only a sufficient condition for order-preserving, not a necessary condition. In 
other words, even if 1 1 2 2c d c d<  is not satisfied, order-preserving can still be possible. But if 
the order preserving does not hold, the inequality 1 1 2 2c d c d≥  always holds. 

It should be noted that in this paper, DS is numerically equivalent to the sum of the elements 
of adjacency matrix as topological representations of graph connectivity. According to [18], 
under the same condition of the length of input samples and the number of graph vertices, the 
stronger the connectivity of the graph, the more uniform the VPV, and the larger the DS and 
the sum of the elements of the adjacency matrix. Therefore, both DS and the sum of the 
elements of the adjacency matrix can represent the strength of graph connectivity. Of course, 
other features reflecting graph connectivity, such as the eigenvalues of the Laplacian matrix 
[22] and the total number of graph edges [13], can also be used to characterize the strength of 
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graph connectivity. In this paper, DS is calculated as graph feature in all simulations. Table 2 
shows the coefficient values 1 1c d , 2 2c d  and DS values 1φ , 2φ obtained from 10 times 
simulations when the observed signal are the constant with AGWN of variances 2

1 10σ =  and 
2
2 1σ = , respectively, where 1R = . The parameter settings are as follows: the length of the 

signal samples 1000N = , and the number of graph vertices 0 20N = . For simplification of 
expression, the generated graph with noise variance 2

1 10σ =  is denoted as 
1

Gσ , and the 
generated graph with noise variance 2

2 1σ =  is denoted as 
2

Gσ . The flag of order-preserving is 
indicated by ‘1’, otherwise it is indicated by ‘0’. 

 
Table 2. The coefficients and DS values under different noise variances 

index 
record 1 2 3 4 5 6 7 8 9 10 

1 1c d  3.076 2.518 2.773 3.038 3.205 3.675 3.522 2.873 3.445 2.805 
2 2c d  2.297 2.772 2.338 2.438 2.477 2.445 2.506 2.123 2.238 2.233 

1φ  250 282 254 222 240 188 236 262 202 250 
2φ  226 206 256 208 214 224 278 264 280 242 

Order-preserving 
label 1 1 0 1 1 0 0 0 0 1 

 
In Table 2, for the 2nd simulation, the coefficients 1 1c d and 2 2c d  satisfy the order-preserving 

condition of Theorem 1, i.e., 1 1 2 2c d c d< , then 1 2φ φ> , which indicates that the connectivity of 

1
Gσ is greater than the connectivity of 

2
Gσ . However, for the 1st, 4th, 5th, and 10th simulation, 

although the connectivity of 
1

Gσ is greater than the connectivity of 
2

Gσ , the coefficients 1 1c d  
and 2 2c d  do not satisfy the order-preserving condition in Theorem 1. From this, it can be seen 
that 1 1 2 2c d c d<  is a sufficient but not necessary condition for realizing order-preserving 
between input majorization order and quantization majorization order. From another 
perspective, if order is not preserved between input majorization order and quantization 
majorization order, then 1 1 2 2c d c d<  cannot hold, as seen in index 3rd, 6th, 7th, 8th, and 9th 
simulation trails. 
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(a) PDF of the input samples                        (b)Partial sum of VPV 

Fig. 1. PDF of the input samples and its partial sum of VPV. 
 

Fig. 1 shows the the PDF of the input samples with AGWN of different variances for graph 
transformation and the corresponding partial sums of VPVs in an individual simulation trial. 
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As shown in Fig. 1 (a), 
1
( )Xf x ≺

2
( )Xf x  holds, indicating that 1X  is more uniform compared 

to 2X . Similarly, in Fig. 1 (b), there is p ≺ q , indicating that p  is more uniform compared to 
q . In this case, the input majorization order and the quantization majorization order is order 
preserving. Based on the above analysis, we attempt to use the OPR of the majorization order 
as a quantitative criterion to determine whether the connectivity of the graph approximately 
decreases monotonically as the variance of the AGWN decreases. Hence, the OPR of the 
majorization order is defined as: 

1
( Xfη = I ≺

2Xf ⇒ p ≺ ) / eNq ,                                                  (12) 
where eN  is the number of simulations, ( )ZI  is an indicator function that takes the value 1 
when Z  is true and 0 when Z  is false. From this, we can calculate that the OPR in Table 2 
is 50%. Clearly, the higher the OPR, the better the monotonicity of the approximate decrease 
in graph connectivity as the variance of the Gaussian noise increases. Conversely, the lower 
the OPR, the worse the monotonicity. 

In this paper, the input samples for the graph transformation are frequency band binary 
phase shift keying (BPSK) signals with AGWN unfortunately. It is difficult to obtain an 
analytical expression for the PDF of the input samples. However, the issue of order-preserving 
between input majorization order and quantization majorization order under different noise 
variances still exists. Moreover, it is also difficult to analysis analytically and we resort to 
simulation. If the BPSK signal is a deterministic signal, the PDF of the samples obtained by 
adding AGWN to the deterministic signal can be calculated by convolving the statistical 
histogram of the deterministic signal with the statistical histogram of the Gaussian distributed 
random variable. Since the BPSK signal is deterministic, the convolution result mainly 
depends on the distribution of the Gaussian distributed random variable. According to the 
property of convolution, if the variance of the Gaussian distributed random variable is larger, 
the PDF of the Gaussian distributed random variable becomes more uniform, and the 
convolution becomes more uniform, and vice versa. Furthermore, we use some simulations to 
verify this conclusion. 

Fig. 2 shows the PDFs of input samples of BPSK signals with AGWN of different variances, 
and their non-increasing rearrangement of VPVs. The parameters are set as follows, the signal 
amplitude 4A = , carrier frequency 0 20.76MHzf = , the symbol width are 640ns, the sampling 
interval 100ust∆ = , the sample length 1000N = , the initial phase 4θ π= , and the number of 
graph vertices 0 20N = . It can be seen that the input samples with larger variance have a more 
uniform distribution, and the VPV with larger variance is also more uniform, too, which 
verifying the above conclusion and shows that the order is preserved in this case. 
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           Fig. 2. PDFs of input samples and their non-increasing rearrangements of VPVs. 
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Table 3 shows the DS value of 1φ  and 2φ , and order-preservation labels when the input 
samples are BPSK signals added with AGWN, where the variances are 1 10σ =  and 2 1σ = , 
respectively. It can be observed that the OPR is 30% when transforming the input samples in 
time domain to graph directly. Therefore, it is necessary to preprocess and modify the input 
samples before graph transformation in order to increase the OPR and enhance order-
preserving ability of the input majorization order for improving the graph-based SNR 
estimation. 

 
Table 3. DS values under different noise variances 

index 
record 1 2 3 4 5 6 7 8 9 10 

1φ  196 248 228 276 234 240 218 216 254 228 
2φ  238 252 226 230 266 276 264 238 250 238 

Order-preserving 
label 0 0 1 1 0 0 0 0 1 0 

3.3 Graph-based SNR estimation using SBS 
The proposed graph-based SNR estimation algorithm using SBS consists of two main stages: 
expression fitting and SNR estimation. The detailed description of the proposed algorithm is 
provided below: 
 

Stage 1: Expression fitting. 
Input: Observed signal ( )x n , signal length N , number of vertices 0N , length of segmented 
samples in the overlapping segmentation step l  , length of overlapping samples h , number 
of segments m , length of block samples within each segment a . 
Output: SNR estimation expression ( )fβ α= . 
Process: 
a) Segment the observed signal ( )x n  with overlapping to obtain 

1 2( ), ( ),..., ( ),1m lρ θ ρ θ ρ θ θ≤ ≤ , where ( - ) ( -1)+N ll h m= × . 
b) Calculate the spectrum of 1 2( ), ( ),..., ( ),1m lρ θ ρ θ ρ θ θ≤ ≤  and get the real parts of them, 
denoted as 1 2( ), ( ),..., ( )ms s sθ θ θ . 
c) Block and sum the samples of ( ),1is i mθ ≤ ≤ with length of samples a , and obtain a SBS 

sequence as ( ),1 ,1i
li m aτ τ  Ψ ≤ ≤ ≤ ≤   .  

d) Convert ( ),1i i mτΨ ≤ ≤  into graphs 1 1 1 2 2 2( , ), ( , ),..., ( , )m m mG E V G E V G E V  with 0N  vertices.  
e) Calculate the average DS of the graph 1 1 1 2 2 2( , ), ( , ),..., ( , )m m mG E V G E V G E V . 
f) Correlate the average DS α  obtained for each SNR with the corresponding SNR and fit 
the expression ( )fβ α= . 
Stage 2: SNR estimation. 
Input: Test signal 1( )x n . 

Output: Estimation of SNR β
∧

. 
Process: 
a) Calculate the average DS 1α  of the test signal 1( )x n  using stages (a) ~ (e) in Step 1. 

b) Substitute 1α  into the fitting expression ( )fβ α=  to obtain the estimation of SNR β
∧

. 
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Intuitively, the main indicators for evaluating the robustness of SNR estimation algorithms 
are the monotonicity and rate of change of the DS with respect to SNR. Firstly, it is necessary 
to ensure the monotonicity of the fitting curve of SNR estimation. If the relationship between 
DS and SNR is not monotonical, it will result in estimation ambiguity between the DS and 
SNR. Secondly, when satisfying the monotonicity condition, further observation of the rate of 
change of the fitting curve is also important. If the rate of change of the curve is faster, it 
indicates that there is a significant difference in DS corresponding to adjacent SNRs, which is 
beneficial for improving estimation performance. Furthermore, if the monotonicity of the 
curve and the rate of change are not significantly different, the variance of DS corresponding 
to the same SNR is another important factor effecting SNR estimation performance. Intuitively, 
larger variance of DS results in larger estimation error. Therefore, the monotonicity, the rate 
of change, and the variance of DS with respect to SNR are three important indicators for 
evaluating performance of estimation algorithm. A monotonic curve with a faster rate of 
change and a smaller variance of DS generally results in smaller estimation errors. Inspired by 
[23], we define the deflection coefficient of DS as indicators for evaluating the differences in 
connectivity of generated graph under adjacent SNRs, as follows: 

[ ] [ ]
, , 1,..,i j

ij s
i

DIS i j N
var

β βΕ −Ε
= = ，                          (13) 

where [ ]iβΕ is the average DS under dBi , [ ] j
βΕ  is the average DS of under dBj , sN  is 

number of SNR investigated in simulations, and [var[ ] +var[ ] ] / 2i i jvar β β=  is the average of the 
variance. Intuitively, the higher the OPR, the better the monotonicity of the fitting curve, and 
the larger the deflection coefficient, accordingly, the more favorable the accuracy of the graph-
domain SNR estimation. Here, we verify the relationship between the OPR and the deflection 
coefficient by simulation. At the same time, in order to solve the two problems mentioned 
before, namely, the low OPR of directly using the real part of the observed signal in the time-
domain for graph transformation and the fact that the algorithm in [11] is only applicable to 
baseband signals, we attempt to utilize the SBS as the input fed to graph transform. Specifically 
speaking, the observed signal is segmented by overlapping, and then the real part of the 
spectrum of each segment is blocked and summed to construct a graph by which the average 
DS is calculated. 

Table 4 shows the OPR and the deflection coefficient of the proposed algorithm and the 
existing algorithm in [11] under different SNRs with 1000 trails. In each simulation, 20 sets 
of training samples are obtained, and the average DS from these 20 sets are calculated, 
following the same conditions as in Fig. 2. It can be observed that under baseband conditions, 
at lower SNRs, the OPR and deflection coefficient of the proposed algorithm are significantly 
higher than the algorithm in [11]. At higher SNRs, the OPR are the same for both two 
algorithms, but the deflection coefficient of the proposed algorithm is much larger than that of 
the algorithm in [11]. Under frequency band conditions, both the OPR and deflection 
coefficient of the proposed algorithm are significantly higher than those of the algorithm in 
[11]. Fig. 3 shows the deflection coefficient of the proposed algorithm and the existing 
algorithm in [11] for adjacent SNRs calculated from 20 sets of training samples. It can be 
observed that for both frequency band and baseband signals, the deflection coefficient 
obtained by the proposed algorithm is significantly larger than that of the algorithm in [11]. 
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Table 4. Comparison of OPR and deflection coefficient between the proposed algorithm and the 
algorithm in [11] 

index 
record 

baseband
SNR=0,5dB  

baseband
SNR=5 20dB，  

frequency band
SNR=0,5dB  

frequency band
SNR=5 20dB，  

OPR/ deflection 
coefficient of the 

proposed algorithm 
100%/5.12 100%/24.25 100%/6.42 100%/24.06 

OPR/ deflection 
coefficient in [11] 54%/1.58 100%/20.8 10%/-0.87 0/3.69 
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Fig. 3. Comparison of deflection coefficients between the proposed algorithm and the algorithm in [11]. 

3.4 Algorithm complexity analysis 
Here, we analyze the computational complexity of the main steps in the proposed algorithm, 
and compare with that of the algorithm in [11].  

The complexity of the proposed algorithm involves the following steps: 1) The 
computational complexity of calculating the real part of the spectrum for each segment after 
overlapping segmentation is approximately 2( log )llΟ . 2) In the grouping and summation step, 
the number of addition operations within each segment is ( ) 01a a− , resulting in a 

computational complexity of approximately ( )lΟ , where 0 aa l=  
  . 3) For the graph 

transformation step, the input sample size is 0a . After obtaining the maximum and minimum 
values of the graph input during the normalization process, an addition and a multiplication 
operation are performed. The quantization requires 0a  comparisons, and 0 1a −  comparisons 
are needed to compare adjacent vertices and construct the edges of the graph. Therefore, the 
computational complexity is approximately 0( )aΟ . 4) Calculating the DS requires 2

0a  addition 
operations, resulting in a computational complexity of 2

0( )aΟ . Overall, the computational 
complexity of processing one segment sample is approximately 0

2
2 0( log )ll l a aΟ + + + . 

Therefore, the computational complexity of performing the above operations on one observed 
signal is approximately 0

2
2 0( log )lml ml am amΟ + + + .  

The main steps and their computational complexity analysis of the algorithm in [11] is as 
follows: 1) After overlapping segmentation, the graph transformation is performed for each 
segment. The input sample length for graph transformation is l . The normalization, 
quantization, and graph mapping steps are the same as in the proposed algorithm, resulting in 
a computational complexity of ( )lΟ . 2) Calculating the sum of the adjacency matrix of the 
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graph require 2l  addition operations, resulting in a computational complexity of 2( )lΟ . 
Overall, the computational complexity of processing one segment sample is approximately 

2( )l lΟ + . Therefore, the computational complexity of performing the above operations on one 
observed signal is approximately 2( )ml mlΟ + . 

Considering that a  is generally selected to be 5~10, we have 0a l<< . Therefore, the 
computational complexity of the algorithm in [11] is significantly greater than that of the 
proposed algorithm. 

Remarks: For a given original power spectrum (OPS) of the observed signal contained by 
AWGN, the connectivity of the graph transformed from OPS is approximated to that generated 
from SBS [17]. This is the main reason that we utilized the block processing. 

4. Performance simulation 
This section will accomplish the following tasks: 1) Curve fitting method of the proposed 
algorithm and its evaluation under different noise backgrounds and channel conditions; 2) 
Analysis of the impacts of different parameters on the performance of the graph-based SNR 
estimation algorithm proposed in this paper; 3) Comparison of the performance of the 
proposed algorithm in this paper, the algorithm in reference [11], and the M2M4-based SNR 
estimation algorithm in [7] using the normalized root mean square error (NRMSE) and 
computational complexity as the metric. NRMSE is defined as  

2

1

1 1( ) ( )i
i

i
i

NMRSE
ψ

ψ

∧ ∧

=

=
Γ

−Γ Γ Γ∑ ,                                                   (14) 

where ψ   is the times of simulations, i

∧

Γ   is obtained via ˆ /10ˆ 10 i
i

βΓ =   in the thi   simulation, 
where ˆ

iβ  is the estimated value of SNR, and iΓ  is obtained via /1010i
βΓ = , where β  is the 

true value of SNR. 
Unless otherwise specified, the observed signal is a BPSK signal including AGWN with 

range of the SNR varying from 0 to 20dB. The signal parameters are consistent with Fig. 2, 
and the parameters involved in the signal transformation processes are shown in Table 5. 

 
Table 5. Parameters involved in the signal transformation process 

Signal transformation process Parameter name Value 

Overlapping segment 

length of segmented samples l  200,100,50 

length of overlapping samples h  0,10,50 

number of segments m  20 
SBS length of block samples within each segment a  5,10,20 

Graph transformation number of vertices 0N  40 

 

 

 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                    3097 

4.1 Curve fit performance evaluation based on SBS 
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Fig. 4. Relationship between the average DS of and SNR, along with the fitting curve. 

 
Fig. 4 represents relationship between the average DS of and SNR, along with the Fitting 
Curve, when the length of segmented samples 200l =  , the length of overlapping samples 

10h = , and the length of block samples within each segment 5a = . The average DS decrease 
monotonically as the SNR increases during the fitting process. By applying the trust-region 
algorithm [24] for nonlinear fitting based on the obtained average SD under each SNR 
condition, an expression for estimating SNR is obtained by 

= ( )=-0.0001533 exp(0.1573 )+83.34 exp(-0.03998 )fβ α α α× × × ×                       (15) 
Next, we further analyze the mapping relationship between the average DS and SNR under 

different types of noise distributions and channel conditions. 
 

4.1.1 Different types of noise distributions 
Fig. 5 presents the average DS versus SNR under different noise distributions when the length 
of segmented samples 200l = , the length of overlapping samples 10h = , and the length of 
block samples within each segment 5a = . It can be seen that not only Gaussian noise but also 
other non-Gaussian noise distributions such as the exponential, uniform, Chi-square, and 
Laplacian noises, all exhibit a monotonically decreasing trend in the average DS as the SNR 
increases, which indicates that the proposed algorithm is effective for various types of noise 
distributions considered in the wireless communications. 
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Fig. 5. The average DS versus SNR under different noise distributions. 
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4.1.2 Different types of channels 
Fig. 6 presents the average DS versus SNR under different channels when the length of 
segmented samples 200l = , the length of overlapping samples 10h = , and the length of block 
samples within each segment 5a =  . According to the definition in (2), channels can be 
categorized into four types: Channel I: ( ) ( 1) ( 2) ( 3)c n n n nδ δ δ= − + − + −  , Channel Ⅱ: 

( ) ( 1) 0.2 ( 2) 0.5 ( 3)c n n n nδ δ δ= − + − + − . Channel Ⅲ: a frequency-flat Rayleigh fading channel 
with a maximum Doppler shift of 130Hz, featuring only one path with no delay, and a single 
path gain of -6dB. Channel Ⅳ: a frequency-selective Rayleigh fading channel with a 
maximum Doppler shift of 130Hz, having four paths with delays of 0,5 ,10 ,15t t t∆ ∆ ∆  
respectively, and multi-path gains of 0dB, -3dB, -6dB, and -9dB respectively. Clearly, in 
various channels, as SNR increases, the estimated SNR values generally show a decline trend. 
However, for Channel Ⅲ and Channel Ⅳ, when the SNR is high, there is a small local 
fluctuation in the estimated SNR values. Furthermore, the rates of decrease are relatively 
similar among the above mention five cases. This indicates that the proposed algorithm 
remains effective under the five kinds of channels provided in the simulations when SNR is 
less than 10dB. 
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Fig. 6. The average DS versus SNR under different channels. 

4.2 Evaluation performance 

4.2.1 Different lengths of segmented samples 
Fig. 7 presents the average DS versus SNR under different lengths of segmented samples 

when the length of segmented samples 200 100 50l = ， ， , the length of overlapping samples 10h = , 
and the length of block samples within each segment 5a =  . As the length of segmented 
samples decreases, the rate of change in average DS decreases. This phenomenon is attributed 
to the decrease in the number of samples used for graph transformation due to the reduction in 
length of segmented samples, resulting in smaller differences in graph connectivity under 
different SNR. Fig. 8 presents the influence of length of segmented samples on the estimation 
performance. In the entire range of SNR, as the length of segment samples decreases, the 
NRMSE increases. Therefore, increasing the segment length can enhance the 
distinguishability of graph connectivity under different SNR, thereby improving the SNR 
estimation performance. However, it should be noted that this causes higher computational 
complexity. Hence, when taking graph connectivity distinguishability and computational 
complexity into consideration, it is crucial to carefully select an appropriate length of 
segmented samples. 
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Fig. 7. The average DS versus SNR under different length of segmented samples. 
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Fig. 8. The influence of length of segmented sample on the estimation performance. 

 

4.2.2 Different lengths of overlapping samples 
Fig. 9 presents the average DS versus SNR under different lengths of overlapping samples, 
when the length of segmented samples 200l = , the length of overlapping samples 0 10 50h = ，， , 
and the length of block samples within each segment 5a = . The rate of change in average DS 
remains relatively consistent. Additionally, the range of the average DS also remains similar. 
This indicates that the variation in length of overlapping sample has similar impact on the 
graph connectivity. Fig. 10 presents influence of the number of overlapping samples on the 
estimation performance. It can be observed that, at the same SNR, the variation in the number 
of overlapping samples does not significantly affect the NRMSE. The purpose of applying 
overlapping processing to the segmented samples is to generate more segments where the input 
sample size is relatively small and increases the number of input sample of graph 
transformation, thereby improving the accuracy and stability of the SNR estimation curve 
fitting. 
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Fig. 9. The average DS versus SNR under different lengths of overlapping samples. 
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Fig. 10. Influence of the length of overlapping samples on the estimation performance. 

 

4.2.3 Different lengths of block samples within each segment 
Fig. 11 presents the average DS versus SNR under different lengths of block samples within 
each segment when the length of segmented samples 200l =  , the length of overlapping 
samples 10h = , and the length of block samples within each segment 510 20a = ，， . As the length 
of block samples increases, the rate of change in average DS decreases. This is because an 
increase in the length of block samples leads to a reduction in the number of input samples of 
graph transformation, resulting in fewer changes in graph connectivity with varying SNR. 
Therefore, reducing the length of block samples appropriately can enhance the 
distinguishability of graph connectivity under different SNR. Fig. 12 presents influence of 
lengths of block samples within each segment on the estimation performance. As the length of 
block samples increases, the NRMSE also increases. Therefore, reducing the length of block 
samples is beneficial for improving the SNR estimation performance. However, it should be 
noted that this will bring increasing computational complexity and a loss of statistical 
significance. Generally, it is recommended to have a group size of at least 40 samples after 
grouping. In this case, 5a =  is chosen. 
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Fig. 11. The average DS versus SNR under different lengths of block samples within each segment. 
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Fig. 12. Influence of length of block samples within each segment on the estimation performance. 

 

4.2.4 Different step sizes for graph transformation 
Fig. 13 presents the average DS versus SNR under different graph mapping step sizes. When 
using multi-step sizes for graph edge construction, the average DS exhibit a monotonically 
decreasing trend as the SNR increases. Furthermore, their rate of change is significantly faster 
compared to the case of a single-step size. Fig. 14 presents boxplot of DS under different graph 
mapping step sizes, while Fig. 15 shows comparison of deflection coefficients under different 
graph mapping step sizes. The DS value and its variance of the graph obtained through a 
single-step size graph mapping are generally smaller than those of the graph obtained through 
multi-step size graph mapping. Therefore, we choose a single step in the graph mapping 
process. Additionally, the deflection coefficients of the single-step size transformation graphs 
are generally larger than those of the multi-step size transformation graphs. Fig. 16 presents 
impact of graph mapping step size on the estimation performance. When the SNR is greater 
than 7dB, the estimation performance of the single-step size outperforms that of the multi-step 
size, confirming the previously mentioned conclusion. 
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Fig. 13. The average DS versus SNR under different graph mapping step sizes. 
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Fig. 14. Boxplot of DS under different graph mapping step sizes. 
 
 

0 5 10 15 20
-1

0

1

2

3

4

 

 

O
ffs

et
 c

oe
ffi

ci
en

t

Adjacent SNR(dB)

 single-step
 mulit-step

 
Fig. 15. Comparisons of deflection coefficients under different graph mapping step sizes.
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Fig. 16. Impact of graph-mapping step size on the estimation performance. 

 

4.3 Performance comparison with existing algorithms 

4.3.1 Comparisons of performance on estimation 
Fig. 17 presents performance comparisons of the proposed algorithm (denoted as GSBF), 
graph-based SNR estimation algorithm based on the time-domain signal [11] (denoted as 
GSET), M2M4 [7] and SVD [8] under condition of AWGN. The simulation conditions are 
provided in Table 5, and BPSK signal parameters are the same as set in Fig. 2. Note that, since 
GSET fails to exhibit a monotonic relationship between the graph connectivity and the SNR 
for a frequency band signal, GSET was modified by performing segmented fitting to make 
comprehensive comparisons. Specifically, the fitting was done separately for SNRs below 
11dB and those above 11dB, resulting in segmented fitting curves for SNR estimations. As 
can be seen from the figure, for frequency band signals, GSBF outperforms GSET and M2M4, 
especially, when the SNR ranges from 3dB to 15dB. For baseband signals, GSBF performs 
better than M2M4 and is essentially equivalent to GSET. Additionally, regardless of a 
frequency band or base band signal, when the SNR varies from 13dB to 20dB, GSBF performs 
noticeably better than SVD. When SNR is low, SVD has the most advantageous performance 
of all the mentioned algorithms, but it has a high computational complexity, which is expressed 
in Table 6. 

Fig. 18 compares the performances of the proposed algorithm with three others under 
multipath channels. In this case, Channel II: ( ) ( 1) 0.2 ( 2) 0.5 ( 3)c n n n nδ δ δ= − + − + − . 
Intuitively, for frequency band signals, GSBF performs better than GSET when the SNR 
ranges from 3dB to 9dB. Moreover, when the SNR ranges from 1dB to 20dB, GSBF performs 
better than M2M4 and SVD. For baseband signals, GSBF outperforms M2M4 and SVD, but 
is slightly inferior to GSET. It's worth mentioning that compared to the other three algorithms, 
the performance curve of our algorithm does not change much. 

Fig. 19 shows the performances of the proposed algorithm versus three others under fading 
channels, i.e., Channel Ⅲ. For frequency band signals, overall, GSBF performs better than 
M2M4 and GSET, but it is inferior to SVD when SNR is low. For baseband signals, GSBF is 
significantly better than M2M4, and at high SNR, it performs better than SVD but slightly 
worse than GSET. 

Fig. 20 illustrates the comparative performance of GSBF, SVD and GSET under Channel 
Ⅳ. It should be noted that by simulations we found that under a frequency-selective Rayleigh 
channel, GSET fails for SNR estimation of frequency band signals, and M2M4 may yield 
negative SNR estimate for both frequency band and base band signals. Due to the failure of 
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the two algorithms under this channel, the performance of GSET and M2M4 were not depicted 
in Fig. 20 (a), and M2M4 was not considered in Fig. 20 (b). The figures show that our 
algorithm outperforms SVD under low SNR for frequency band signals and significantly 
surpasses GSET for baseband signals. Overall, the proposed algorithm (GSBF) and SVD are 
less affected by the channel. From the perspective of computational complexity, our method 
has an advantage over SVD requiring matrix decomposition with computational complexity 
order of 3O( )N , where N  is the matrix dimension. 

In summary, the proposed algorithm outperforms M2M4, excels GSET for frequency band 
signals. and outperforms SVD under multipath channels. Additionally,the performance curve 
of our algorithm is the most stable as well. 
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(a)frequency band signal                                       (b)baseband signal 

Fig. 17. Performance comparisons of the proposed algorithm and other algorithms under AWGN. 
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Fig. 18. Performance comparisons of the proposed algorithm and other algorithms under multipath 
channels (Channel II). 
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Fig. 19. Performance comparisons of the proposed algorithm and other algorithms under fading 
channels (Channel Ⅲ). 
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Fig. 20. Performance comparisons of the proposed algorithm and other algorithms under Channel Ⅳ. 
 

4.3.2 Comparison of computational complexity 
Table 6 presents the computational complexity orders and the average running time required 
to complete one estimation for the four algorithms. The training time is obtained by performing 
20 simulations when SNR ranges from 1dB to 20dB, and the testing time is the average of 
1000 simulations. The simulation conditions are the same as in Fig. 17 (a), where N ml≈ . The 
hardware platform used in the simulation is Intel(R) Core(TM) i7-8550U CPU (1.80GHz), and 
the software platform is MATLAB R2021a. Except for the M2M4 and SVD, which does not 
require training, the total computation time of GSBF is approximately 50% of the total 
computation time of GSET under the same conditions. In conclusion, considering both 
estimation performance and computational complexity, GSBF has the best overall 
performance. 
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Table 6. Comparison of computational complexity for different algorithms. 

Algorithm Computational complexity order 
Training 

time(ms) 

Testing 

time(ms) 

Total 

time(ms) 

GSBF 2
2 0 0O( log )lml ml am ma+ + +  1752 3.09 1755.09 

GSET 2O( )lm l m+  3824 8.55 3832.55 

M2M4 O( )N  - 11.02 11.02 

SVD 3O( )N  - 1831.8 1831.8 

5. Conclusion 
An improved graph-based SNR estimation algorithm using SBS is proposed in this article. The 
main contribution of this paper lies in introducing OPR and deflection coefficient as indicators 
to guide the selection of inputs for graph-based SNR estimation, and analyzing the order-
preserving about majorization relationships between the input and quantization samples in the 
graph transform. Simulation results demonstrate that the proposed method effectively 
establishes a functional mapping from the average DS to SNR values. The influence of various 
parameters, such as length of segmented samples, length of overlapping samples, and length 
of block samples within each segment on the estimation performance is analyzed, and the 
simulation results indicate that the variation of length of overlapping samples has no impact 
on performance, whereas both excessively large length of block samples within each segment 
and too small length of segmented samples will affect the estimation performance. 
Additionally, when the signal type varies and the channel experiences constant multipath or 
fading, this algorithm remains effective. Compared with the existing graph-based SNR 
estimation method, the proposed algorithm is applicable to both frequency band and baseband 
signals, exhibiting better estimation performance with lower computational complexity under 
low SNRs. However, there still exists several limitations in the article. It can be briefly 
summarized as follows: 1) the proposed algorithm only utilizes simple graph transformations 
without considering additional graph information such as self-loops or directionality, which 
capture more topological information about the signals; 2) the function between the DS and 
the SNR didn’t consider the utilization of the machine learning network. In future research, 
we will investigate other techniques like Graph Convolutional Neural Network to develop 
novel graph-based SNR estimation methods. 
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