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Abstract 

 
With the continuous advancements in malicious code polymorphism and obfuscation 
techniques, the performance of traditional machine learning-based detection methods for 
malware variant detection has gradually declined. Additionally, conventional pre-trained 
models could adequately capture the contextual semantic information of malicious code and 
appropriately represent polysemous words. To enhance the efficiency of malware variant 
detection, this paper proposes the MalEXLNet intelligent semantic analysis and detection 
architecture for malware. This architecture leverages malware API call sequences and employs 
an improved pre-training model for semantic vector representation, effectively utilizing the 
semantic information of API call sequences. It constructs a hybrid deep learning model, 
CBAM+AttentionBiLSTM, for training and classification prediction. Furthermore, 
incorporating the KMeansSMOTE algorithm achieves balanced processing of small sample 
data, ensuring the model maintains robust performance in detecting malicious variants from 
rare malware families. Comparative experiments on generalized datasets, Ember and Catak, 
the results show that the proposed MalEXLNet architecture achieves excellent performance in 
malware classification and detection tasks, with accuracies of 98.85% and 94.46% in the two 
datasets, and macro-averaged and micro-averaged metrics exceeding 98% and 92%, 
respectively. 
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1. Introduction 

The threat of malware has existed since the inception of computers. As security analysts and 
researchers continually improve defences, malware developers persist in innovating, 
discovering new infection vectors and enhancing their obfuscation techniques. Malware 
threats have continued to expand both vertically (i.e., in number and size) and horizontally 
(i.e., in type and function) due to the opportunities presented by technological advancements. 
The Internet, social networks, smartphones, IoT devices, and other technologies have 
facilitated the creation of intelligent and sophisticated malware [1]. According to statistics, 
thousands of new malware variants are developed and spread daily in cyberspace. Most of 
these malware variants are derived from mutations of known malware, such as new malware 
created from old versions through variations and polymorphisms. These new versions can alter 
their structure and functionality flow to evade antivirus software detection [2]. 

According to the AV-Test Institute, as of June 2024, a total of 883,810,844 Windows 
malware and 189,779,307 Windows PUAs have been discovered, representing increases of 
44,439,528 and 661,824, respectively, compared to the previous year [3]. The Cyber Threat 
Report published by SonicWall indicates that SonicWall Capture Labs threat researchers 
recorded 6.06 billion malware attacks in 2023, an 11% year-over-year increase, marking the 
highest number of attacks since 2019 [4]. Data from the Kaspersky Security Bulletin 2023 
shows that during the reporting period from November 2022 through October 2023, 
437,414,681 malware attacks were thwarted from global online sources; financial malware 
was prevented from launching on 325,225 users' computers; more than 23,364 revised 
ransomware variants were discovered, along with 43 new ransomware families [5]. Therefore, 
there is a pressing need to design an effective automatic detection method against malware 
attacks. 

There are two main approaches to malware detection. One is the static signature-based 
method, where the static characteristics of malware are stored in a database, and a file’s unique 
signature is compared against this database to determine if it is malware. While this method is 
the most common and convenient, it cannot recognise unknown malware, as only known 
variants are stored [6]. The other approach is behaviour-based detection, which examines a 
file’s behaviour and characteristics to identify whether it is malware. If confirmed, this method 
also classifies the malware family. Though more complex, behaviour-based detection yields 
better results for detecting and classifying unknown malware [1]. 

Since malware variants are updated and iterated at an increasing rate, identifying unlogged 
malware has become a top priority in malware detection. Although variant malware may 
exhibit different code sequences in various environments, it must maintain consistent 
behaviour across all environments. Since malware is designed to perform specific malicious 
activities, most detection and classification methods focus on behavioural characteristics 
rather than structural features. These methods use data such as Windows API calls, DNS 
parsing, and registry operations to reflect malware behaviour  [7]. API calls are widely used 
for dynamic behavior-based analysis [8]. Sequences of API calls are considered representative 
of understanding malware's behavioral characteristics [9]. 

The development of artificial intelligence technology has simplified life by providing 
efficient solutions in different fields, including cybersecurity [10]. Malware variant detection 
using API call sequences can be achieved through machine learning and deep learning. 
However, machine learning faces limitations, including delays introduced by feature 
engineering and the need for extensive data preprocessing, which hinder real-time analysis. 
Adding data engineering layers to manage the growing data volume exacerbates these delays. 
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As a result, deep learning has been employed for malware detection, offering automated 
feature engineering, the ability to handle large datasets, extract features from limited data 
samples, and support one-shot learning [11]. 

However, existing deep learning-based research has limitations. Models like CNNs, RNNs, 
LSTMs, and BiLSTMs have been widely used in recent years to acquire sequence features and 
identify malicious behaviours automatically. Recent studies [12][13] found that these models 
can be spoofed through wrapping and black-box attack techniques. Two main issues contribute 
to this: first, simply mapping APIs to numeric values overlooks the inherent semantic features 
of functions; second, these models need to capture sequential features effectively. Additionally, 
they need help with large datasets containing numerous API types, extensive feature sets, and 
long sequences, which degrades performance. 

The API call sequence of a program serves as context representing the program, and 
malware from the same family generally exhibits similar behaviour. Thus, the contextual 
semantic relationships of API call sequences are often alike [14]. The sequence context and 
implicit function semantics are crucial in API call sequence categorization. API function 
names imply various semantics, such as read, write, search, and download operations and 
related resources like system permissions, networks, registries, and graphical user interfaces. 
Encoding API call sequences with one-hot vectors produces high-dimensional vectors and 
leads to the loss of critical semantic information [15]. Techniques from natural language 
processing, such as text sequence processing [16] and word embedding [17], aid in 
dimensionality reduction and semantic representation. 

Existing studies often use traditional word embedding methods, such as Word2vec, to map 
API sequences to high-dimensional word vectors [18]. Transformer-based pre-training models 
have shown superior performance over traditional models in analyzing the semantics of 
malware API call sequences. However, these models must fully exploit the semantic 
information in API call sequences [19]. To address this, we propose the MalEXLNet 
architecture focused on semantic analysis for malware detection. 

The main contributions of this paper are as follows:1) A MalEXLNet model for malware 
detection oriented towards semantic analysis is introduced. This model is designed to leverage 
malware semantic information and sequence characteristics. Compared to traditional models, 
MalEXLNet more effectively captures behavioural characteristics across global API call 
sequences using the XLNet-based substitution language model;2) Due to differences between 
API call sequences and the pre-trained model corpus, directly using large language models is 
less effective for extracting semantic relationships. This paper proposes replacing XLNet's 
word splitter with an embedding layer, transforming API sequences into word vectors, which 
are then processed by XLNet's stacked Transformer-XL architecture for better semantic 
extraction, producing a feature vector matrix rich in malware behaviour information; 3) To 
address malware evasion techniques such as polymorphism and obfuscation, this paper 
proposes an ensemble model integrating CBAM and AttentionBiLSTM. CBAM extracts local 
features, while BiLSTM focuses on global patterns. An adaptive attention mechanism 
highlights critical features, and the final output is classified into malware families using 
Softmax. 

The rest of the paper is organized: Section 2 reviews related work on malware variant 
detection. Section 3 proposes the MalEXLNet model for semantic-based malware variant 
detection and details its implementation. Section 4 compares the model's performance with 
baseline models, evaluating it based on word vectors and the hybrid deep learning approach. 
Section 5 presents the conclusions. 
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2. Related Works 

Currently, most malware API classification research employs language or deep learning 
models. Deep learning models directly vectorize API function sequences and output 
classification results after training. Alternatively, language models map API call sequences to 
high-dimensional vectors using the extracted semantic information for malware classification. 

This section introduces related research on using language models for semantic 
vectorization and feature extraction of API call sequences, including the techniques used and 
their advantages and disadvantages, as shown in Table 1. 

 
Table 1. Advances in Semantic Analysis of API Sequences 

Author Critical 
Technologies 

Benefit Shortcoming 

Zhang et al 

The model based 
on API-Sequence-
Semantic Fusion 
(Mal-ASSF) [15] 

Mal-ASSF outperforms 
existing solutions by 3% to 5% 

in detection accuracy. 

Further studies can be 
conducted to obtain a better 
representation of semantic 
features using pre-trained 

models. 

Zhang et al 
Skip-

Gram+CNNs-
BiGRU [20] 

Reaching an accuracy of 
0.9828 and an F1-Score of 

0.9827. 

Encoding API names 
manually suffers from a lack 

of flexibility. 

Zhao et al 

Semantic 
chain+Gated 

CNN+Bi-
LSTM+Attention 

[21] 

Obtain semantic chains by 
deconstructing the API and 

employing the parameters of 
the API to augment the 
semantic information 

Does not fundamentally 
address the problem of 

concept drift. 

Maniriho et 
al 

Embedding+CNNs
+BiGRU [22] 

It achieved an F1-score of 0.99 
on the training set and 0.98 on 

the unseen data. 

Embedding cannot understand 
contextual semantic 

information. 
Aggarwal 

et al 
RF+(ELMo+Word
2Vec+BERT) [23] 

It achieved an accuracy 
between 0.91 and 0.93. 

Experimental data set too 
small. 

Γιαπαντζής XLCNN [24] Semantic feature extraction 
using improved XLNet model 

Experimental data set too 
small. 

Liu et al BERT+CNN-
LSTM [18] 

It achieved an accuracy of 
98.81%. 

Experimental data set too 
small. 

 
Based on the contributions of the researchers above, the use of semantic information in 

existing studies on malware API call sequences is inadequate. Most studies still employ 
traditional methods, such as embedding, which must fully leverage these sequences' contextual 
information. Additionally, models that achieve better results are often applied to smaller 
datasets, which can lead to overfitting. This paper proposes a method that improves pre-
training models specifically for malware API sequences and integrates them with a hybrid 
deep-learning model. This approach effectively addresses these issues and is validated on large 
datasets to ensure fair and reliable experimentation. 

3. Methodology 

This chapter presents the construction of the MalEXLNet architecture for the intelligent 
detection of malware variants based on semantic analysis, as proposed in this paper. 
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3.1 System overview  
In this section, we introduce MalEXLNet, an intelligent architecture for malware semantic 

analysis and detection. This method is based on malware API sequences and utilizes an 
enhanced EXLNet model for semantic feature extraction and vectorized representation. The 
extracted semantic feature matrix is input to a hybrid deep learning model, 
CBAM+AttentionBiLSTM. Features captured by CBAM’s localized feature extraction and 
AttentionBiLSTM’s global long-term dependency capture are passed to a fully connected 
layer. The Softmax function classifies each API function call sequence into distinct malware 
families. The design of this method is illustrated in Fig. 1. 

 
Fig. 1. MalEXLNet architecture 

3.2 Generating API calls dataset 
This section presents the construction of the Windows malware datasets Ember [25] and 

Catak [7], which are derived from dynamic and static analysis, respectively. The static 
Windows malware API dataset is constructed by analyzing only the PE file of the malware. In 
contrast, the dynamic Windows malware dataset requires analyzing the malware by executing 
it in a virtual sandbox. The detailed process of constructing these malware datasets is 
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illustrated in Fig. 2. 
The static malware API dataset is generated based on the EMBER dataset. The EMBER 

dataset comprises millions of PE files representing various malware families and their variants. 
Each analyzed file in the EMBER dataset is stored in JSON format, where each entry 
corresponds to an analysis report of either benign or malicious malware. Each report includes 
a unique identifier (the SHA-256 hash and MD5 code of the original file), coarse time 
information (monthly resolution indicating when the file was first observed), a label (0 for 
benign, 1 for malicious, and -1 for untagged), and eight sets of raw characteristics, including 
histograms of parsed values, format-independent histograms, file properties, and import and 
export functions. The dataset is cleaned and anonymized to ensure it does not pose a security 
risk; the import functions contain API call sequences representing malware behaviour. The 
dataset is constructed by screening for malware in the EMBER dataset with tags other than 0, 
extracting their MD5 codes, and analyzing them using the VirusTotal online tool to determine 
each malware's family name. The tags are then reconstructed, and the API call sequences from 
the import table in each malware's analysis report are extracted to represent the malware's 
behavioural characteristics. The final dataset includes each malware's family label and its 
corresponding API function call sequence. The primary information of the EMBER dataset 
used in this study is summarized in Table 2. 

 
Fig. 2. Malware dataset construction process 

 
Table 2. Main information of the EMBER dataset 

Family Number Function Label 

Ramint 386 Multiple ways to spread, steal sensitive data, and remotely control 
infected devices. 

0 

Lethic 382 Sending large amounts of spam through infected computing devices 
with botnet characteristics that allow attackers to remotely control 

infected devices for illegal activities. 

1 

Emotet 527 Capable of stealing sensitive information, spreading other malware, 
and conducting large-scale attacks via botnets. 

2 

Sality 1413 Capable of spreading through infected executables and network 
shares, with the ability to steal sensitive information, download and 

execute other malware, and remotely control through the botnets 
they form. 

3 

Ursnif 241 Trojans that are mainly used to steal banking credentials, login 
information and other sensitive data, with features such as 

keylogging, screen capture and browser injection, and are often 
spread through spam and phishing attacks. 

4 

Total 2949 
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The dynamic malware API dataset is created based on the Catak dataset. As illustrated in 
Fig. 2, this dataset must be produced within a virtual environment to avoid affecting the host 
computer. First, install the Ubuntu operating system and set up the Cuckoo Sandbox 
environment. Execute the malware within the Cuckoo Sandbox and write the resulting files 
into MongoDB. Analyze these files to generate the malware Windows API dataset. Table 3 
presents critical information about the dynamic malware Windows API dataset constructed 
from the Catak dataset. 

 
Table 3. Main information of the Catak dataset 

Family Number Function Label 

Spyware 832 A type of malware that monitors and records user activity to 
steal personal information and sensitive data. 0 

Virus 1001 
Malware that spreads by infecting and modifying legitimate 

files typically disrupts system functionality or steals 
information. 

1 

Backdoor 1001 Malware that creates secret access routes in infected systems, 
enabling attackers to remotely control the system. 2 

Downloader 1001 Programs used to download and execute other malware from 
the Internet are usually the first step in the attack chain. 3 

Trojan 1001 
Malicious programs that masquerade as legitimate software and 

are used to perform unauthorized operations, such as stealing 
data or controlling systems. 

4 

Adware 379 Malware that generates revenue by displaying ads or redirecting 
browsers typically impacts the user experience. 5 

Worms 1001 
Malware that replicates and spreads itself without user 

intervention and is commonly used for rapid proliferation and 
cyber attacks. 

6 

Dropper 891 Programs used to stealthily install and unleash other malware 
on infected systems usually avoid detection. 7 

Total 7107 

 

3.3 Dataset equilibrium 
Producing a balanced dataset is challenging because the number of malware samples from 

different families varies significantly, leading to an imbalanced dataset. Table 1 and 2 show 
that this imbalance can adversely affect the model's classification performance. Specifically, 
the model may become biased toward the larger sample groups, while its accuracy diminishes 
for smaller groups. This imbalance can result in lower prediction accuracy for less-represented 
malware families. 

Data equalization algorithms balance the dataset to address these issues, ensuring that each 
category has approximately equal samples. After reviewing extensive literature and building 
on previous work [26][27][28], we initially selected the KMeansSMOTE, ADASYN, and 
Smote-EnN algorithms as potential methods. After comparing their performance on the dataset, 
as shown in Fig. 3, we decided to use KMeansSMOTE, ADASYN, and Smote-EnN for data 
equalization in this study. 

The KMeansSMOTE algorithm effectively captures the distribution information of the 
original samples by partitioning the sample space into clusters and generating new samples 
within each cluster. This approach creates more representative synthetic samples and reduces 
overfitting to the overall sample distribution. Additionally, the algorithm accounts for the local 
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characteristics of each cluster, resulting in synthetic samples that are more similar to the 
original samples and minimizing noise. Finally, the algorithm handles nonlinear data 
structures well, offering improved oversampling results. The equalization results of the 
KMeansSMOTE, ADASYN, and Smote-EnN algorithms on the EMBER and Catak datasets 
are presented in Fig. 3 and 4. 

3.4 API calls sequence feature-vectorized representation 
Maniriho et al. [22] noted that similarities in API function call sequences differ significantly 

from those in ordinary English words or texts, leading to suboptimal results when using pre-
trained language models directly. Consequently, they employed direct embedding to encode 
API function call sequences, enabling the automatic generation of dense embedding vectors. 
However, this vectorized representation fails to capture semantic relationships, making it 
challenging for the model to recognize shared behavioral patterns within the same family. 

 

 
Fig. 3. Comparison of the effectiveness of equalization algorithms on the EMBER dataset 

 
Fig. 4. Comparison of the effectiveness of equalization algorithms on the Catak dataset 

 
Liu et al. [18] propose using the BERT pre-training model to vectorize the semantic features 

of API call sequences but do not address the inconsistency between API sequences and the 
pre-training corpus. Despite BERT's robust performance, the authors of XLNet [29] 
demonstrate that XLNet often surpasses BERT in various tasks and addresses some of its 
shortcomings. Therefore, this paper proposes a more suitable vectorization method for 
representing API function call sequence features: the Embedding+XLNet model architecture. 

3.4.1 Embedding 
After the dataset is prepared, the API function call sequences must be transformed into a 

format from which the model can learn; this process is known as word embedding. The word 
embedding method proposed in this paper begins by using keras_Embedding to encode the 
API function call sequences and generate word vectors. Specifically, Embedding first 
constructs a collection of all API function call sequences in the dataset. Each sequence within 
this collection is then subjected to sequential integer encoding, where similar sequences are 
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mapped to similar integers, forming a dictionary. The result is an integer-encoded 
representation of each API function call sequence. 

Meanwhile, the Keras embedding layer uses a deep neural network to generate dense vector 
representations of API function call sequences. It maps encoded API calls in the input 
sequence to dense vectors in a high-dimensional space, ensuring that similar API calls are 
positioned closer together. Specifically, the Keras embedding layer processes an input matrix 
of integer-encoded API function call sequences, where each row represents the sequence of 
API calls for a particular malware family. Each integer encoding is mapped to a fixed-length 
dense vector, learned through neural network training. The final output is a dense vector matrix 
representing the API function call sequences. 

Critical parameters of the Keras embedding layer include the vocabulary size of the dataset's 
API sequences and determining the number of unique sequences. The dimensionality of the 
embedding vector determines the length of each dense vector mapped from input words. The 
input sequence length (input_length) parameter, typically set based on the maximum sequence 
length in the dataset, guides Keras in creating an appropriately sized embedding matrix. For 
parameter selection in the Keras embedding layer, the dataset's API sequence length 
distribution is first analyzed (Fig. 5). Most sequences fall below 250 in length, so input_length 
is set to 250. After defining input_length, determining the embedding vector dimension 
(output_dim) involves clustering the dense vectors output by the embedding layer. Visual 
clustering analysis, employing methods like KMeans [30] and t-SNE [31] for dimensionality 
reduction, assists in choosing an appropriate output_dim. t-SNE, known for preserving data 
point distances across high-dimensional to low-dimensional spaces, uses Gaussian distribution 
to measure similarity and achieve effective data visualization through relative entropy 
minimization between spaces. 

In the context of the KMeans algorithm, 2
ji xx −  represents the squared Euclidean distance, 

and iσ  denotes the distance between data point i. The associated variance iy  refers to point i 
in the lower-dimensional space.K-means, a standard clustering algorithm, is a method of 
initially partitioning data into K clusters. Each data point is allocated to the cluster centre that 
is the nearest distance away. Subsequently, the algorithm computes the mean of all data points 
within each cluster, thereby updating the cluster centres. These steps are iterated until either 
the cluster centers converge or a predefined number of iterations is reached. The objective of 
K-Means is to minimise the within-cluster sum-of-squares error, which is a measure of the 
sum of distances from each point in a cluster to its centre. 

 

 
Fig. 5. Statistical plot of length distribution of API sequences 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 10, October 2024                         3069 

   (1) 

                 (2) 

  (3) 

 
Using the t-SNE and KMeans algorithms to visually cluster the word vectors generated by 

embedding, as shown in Fig. 6, we observe that clustering performance is optimal when 
output_dim is set to 50, maximizing feature extraction effectiveness. 

 

 
Fig. 6.  Effect of output_dim clustering in different dimensions 

 
We introduce the contour coefficient index to verify that the clustering effect is optimal 

when output_dim = 50. This index assesses the clarity of contours within each category after 
clustering. Its value ranges from -1 to 1, with higher values indicating better clustering 
effectiveness. The formula for calculating this coefficient is as follows: 

  (4) 

In this context, a(i) represents the mean distance between the ith element x(i) and all other 
elements within the same cluster, indicating the degree of cohesion within the cluster. b(i) 
denotes the nearest mean distance between x(i) and elements of all other clusters, quantifying 
the dispersion between clusters. The silhouette coefficient is illustrated in Fig. 7. 
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Fig. 7. Output _ dim contour coefficients of different dimensions 

 

3.4.2 EXLNet model method 
The XLNet model uses the SentencePiece segmentation method [32]. While SentencePiece 

effectively handles morphemes and unregistered words in regular text, API function call 
sequences often include many unique function names and identifiers, making subword 
segmentation less suitable. In contrast, embedding methods better preserve the integrity of 
function names and identifiers in API function call sequences. Additionally, embeddings allow 
for more flexible customization of sequence processing based on the specific characteristics 
of these sequences. 

The word vectors obtained using only the Embedding model lack semantic relationships in 
the malware API call sequences. Therefore, the output of the Embedding layer is further 
processed with the pre-trained XLNet model to extract contextual semantic features from the 
API function call sequences, enriching the model's learnable features. 

The XLNet model combines the strengths of autoregressive and autoencoding language 
models by introducing the bidirectional context modeling of autoencoding models into the 
autoregressive framework. This approach resolves the inconsistency between training and 
fine-tuning phases typically found in bidirectional autoencoding models due to [Mask]. 
Additionally, XLNet uses the Transformer-XL architecture to address the limitation of fixed-
length input sequences in standard Transformer models [33]. Transformer-XL’s extended 
contextual memory is particularly beneficial for handling long sequential tasks, allowing 
XLNet to excel in tasks requiring long-term dependency modeling. 

The Two-stream in XLNet represents Two groups of information streams, called content 
stream and query stream, which are two hidden states, namely, the content hidden state  

)( tXh z <θ is abbreviated as
tzh , and the query hidden state ),( tz ztXg <θ  is abbreviated as

tzg . 

The query hidden state 0
ig is initialized as a variable w, and the content hidden state is 

initialized as )(0
ti xeh = , where )( txe  is the initial word vector. 

Let m be the number of layers, and compute the query hidden state for each layer: 
  (5) 

Content hidden state: 
  (6) 

In this way, the Query Stream can be used to predict the location without leaking the current 
location's content information, and the purpose of the autoregressive language model is 
achieved. 
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The Attention Score of qi and ki for the same Segment in a standard Transformer can be 
decomposed as follows. 
  (7) 

Based on the above formula, the Transformer-XL model proposes a calculation formula for 
relative position encoding Attention: 
  (8) 

The above two formulas contain four subformulas, numbered Formula A, Formula B, 
Formula C, and Formula D. Compared with Formula abs

jiA , , the relative position code jiR − in 

Formula rel
jiA ,  replaces the absolute position code jU  in Formula B and Formula D, and the 

trainable dRu∈ and dRv∈ are used to replace T
q

T
i WU  in Formula C and Formula D, 

respectively.  
Then, the key is split into EkW ,  and RkW ,  to represent the content and location-related keys. 

In Equation rel
jiA , , equation a represents the content calculation, which is the Embedding of ix  

times the inner product of the Embedding of transformation matrices qW  and ix  times EkW , . 
Equation B represents the content-based position bias, the vector of i multiplied by the relative 
position encoding. C formula represents global content bias; Equation D represents the global 
position bias. 

Then, the hidden state and relative position encoding obtained from the previous calculation 
are input into Transformer-XL, where they are used for computation. Transformer-XL 
enhances Transformer by adding a memory mechanism that saves previous hidden states for 
use in subsequent computations. Each Encoder in Transformer-XL includes a memory to store 
these states. When a new position is computed, the previous state is retrieved from memory 
and combined with the current input. The updated output is then stored in memory, extending 
the sequence length. The formula for vector concatenation is as follows: 
  (9) 

The formula shows that the current input is memory )( 1−nmτ  and the hidden state 1−nhτ  at the 
previous moment. SG() means not participating in the gradient calculation, o means vector 
splicing, τ  means the segment, and n means the number of layers. 

Calculate the Query, Key, and Value: 
  (10) 

In the formula, the query can only be calculated with the hidden state 1−nhτ  at the last time, 
and the Key and value are calculated with the 1−nHτ in Equation 6. Because the Key is 
decomposed into EkW , and RkW , , only the EkW ,  representing the content is used in the 
calculation here. 

The Attention score is calculated from Arel: 
  (11) 

Since E and W have been calculated to q, k and v in Eq. 6, they can be directly substituted 
here. 

Convert the Attention scores into probabilities: 
  (12) 

The Softmax function converts the attention score into a number between 0 and 1; that is, 
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the attention score is converted into a probability.Residual join and layer normalization: 
  (13) 

Residual chaining enables the model to preserve information from the original input as it 
passes through, facilitating more efficient gradient propagation in deep networks. This 
capability allows for training deeper models without encountering vanishing or exploding 
gradients. Layer normalization standardizes features in each Transformer's self-attention 
mechanism and feedforward neural network. It helps reduce internal covariate shifts during 
training, thus stabilizing the training process. Layer normalization is often used with residual 
chaining to enhance the model's expressive power and training effectiveness. 

Fully connected: 
  (14) 

Fully connected layers in each Transformer block help build deeper networks that more 
effectively capture features and dependencies in API sequences. After being processed by an 
XLNet model, the output feature matrix contains the contextual semantic relationships of the 
API sequences, providing richer features for the model to learn. 

The Two-stream in XLNet represents Two groups of information streams, called content 
stream and query stream, which are two hidden states, namely, the content hidden state

)( tXh z <θ  is abbreviated as 
tzh  , and the query hidden state ),( tz ztXg <

θ
is abbreviated as 

tzg . The query hidden state 0
ig  is initiated as a variable w, while the content hidden state is 

initiated as )(0
ti xeh = . The initial word vector is represented by )( txe . 

The comparison of the relationship between using the embedding method, XLNet method, 
and the proposed method and the results after performing word vector transformation is shown 
in Fig. 8. 

 

 
Fig. 8. Relationship between several word vector transformation methods and transformation result 

graph 
 

3.5 Feature extraction for Hybrid deep learning models 
We devised a hybrid deep learning model for automatic feature extraction to enhance the 

extraction of local semantic information from API sequences. This model integrates CBAM 
and AttentionBiLSTM, leveraging their strengths to effectively capture features from malware 
API call sequences and classify malware families. 
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3.5.1 CNN 
Convolutional Neural Networks (CNNs) are prominent models in deep learning, typically 

comprising five layers: the input layer, convolutional layer, ReLU activation layer, pooling 
layer, and fully connected layer. One-dimensional convolution, a fundamental operation in 
CNNs, extracts local semantic information by sliding a small kernel (or filter) across the input 
feature matrix of API call sequences. This operation performs element-wise multiplication and 
summation to produce a new feature map at each position. 

In our model, a one-dimensional CNN layer employs 64 convolutional kernels, each of 
width 3. ReLU activation is applied, and padding is used to handle boundary issues. Each 
convolutional layer is followed by a max pooling layer to reduce dimensionality and enhance 
feature extraction efficiency. This approach enables the model to capture local semantic 
features from API sequences better, facilitating more accurate classification and prediction in 
subsequent layers. 

3.5.2 Convolutional Block Attention Mechanism CBAM 
The Convolutional Block Attention Module (CBAM) is a streamlined enhancement for 

CNN. CBAM integrates spatial and channel attention mechanisms independently, sequentially 
inferring attention maps from intermediate feature maps. This process enhances feature 
optimization by multiplying the attention map with the input feature map. When applied to the 
analysis of malware API call sequences, CBAM effectively highlights crucial semantic 
information, significantly improving the accuracy of malware family classification. Refer to 
Fig. 9 for the CBAM architecture diagram. 

 
Fig. 9. Architecture diagram of CBAM 

3.5.3 AttentionBiLSTM 
After extracting local semantic features with CBAM, long-term dependencies are captured 

from a global perspective to provide a more comprehensive understanding of the API 
sequence's semantic information. This approach aims to capture bidirectional semantic 
information from API sequences while addressing the vanishing gradient problem, enhancing 
the model's ability to capture long-distance dependencies. The BiLSTM network consists of 
two LSTM layers: one processes the sequence in the forward direction and the other processes 
it in the reverse direction. Each LSTM layer includes a hidden state and a memory state. The 
input sequence is fed into the forward and reverse LSTM layers at each time step to compute 
hidden states in both directions. The structure of the LSTM is illustrated in Fig. 10. 
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Fig. 10. LSTM structure 
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  (16) 
  (17) 
  (18) 
  (19) 
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Where ft is the forgetting state vector, Wf is the weight of the forgetting gate, ht-1 is the 
output vector state of the previous moment, xt is the input vector of the hidden state connected 
to the input gate, bf is the bias term to adjust the opening degree of the forgetting gate, it is the 
updated hidden state vector, tanh is the hyperbolic tangent function. ~

tc  is the updated state 
vector of the gating unit, ct is the state vector of the updated gating unit, ct is the state vector 
of the output gate, and ht is the state of the output gate vector of the final result. 

An adaptive attention mechanism layer is incorporated into the model after the BiLSTM 
layer to enhance its ability to process the input sequence and identify critical information and 
dependencies. This mechanism typically consists of one or more parameterized attention heads 
with learnable weight parameters to compute attention scores for each time step in the input 
sequence. Each attention head generates a context vector by applying weights to aggregate the 
hidden states of the input sequence. The multi-head attention mechanism processes the input 
sequence in parallel, with each head learning different aspects of attention and concatenating 
its outputs. 

The adaptive attention mechanism allows the model to assign weights to different parts of 
the sequence at various time steps, enabling automatic learning and adjustment of these 
weights. This capability helps capture critical information within the input sequence, 
enhancing sequence modeling performance. 

The structure of AttentionBiLSTM is shown in Fig. 11. 
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Fig. 11. Structure diagram of AttentionBiLSTM 

 

3.6 Model Structure 
In the preceding sections, the principles of each module in the model and their roles in the 

semantic analysis of malware API call sequences were described in detail. Initially, the 
malware API call sequences in the dataset underwent preliminary word embedding using an 
embedding method. The output from the embedding layer was then input into the XLNet 
model to extract and further enrich semantic relationships and optimize features. The 
embedding matrix, processed by both the embedding method and XLNet, was input to the 
hybrid deep learning model. After local feature extraction by CBAM, the AttentionBiLSTM 
captured long-term dependencies and highlighted key features. Finally, a softmax layer was 
employed for malware detection and classification. 

The specific malware semantic analysis and detection model structure is depicted in Fig. 12. 

4. Experiments and results 

This section details the experimental evaluation performed in the evaluation of the proposed 
framework. A multi-classification problem has been generated based on a semantic analysis 
of malware API call sequences in Windows systems. 

4.1 Experimental Setup 
The malware static detection model proposed in this paper was implemented and tested in 

a Windows 10 (64-bit) computer with processor: 12th Gen Intel(R) Core(TM) i5-12490F 3.00 
GHz, memory: capacity 16 GB, graphics card: NVIDIA GeForce RTX 4060 Ti 8GB; The 
Keras deep learning framework, versions TensorFlow 2.0.0 and Keras2.3.1, is used and the 
gradient descent optimization algorithm is Adam. 
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Fig. 12. Malware semantic analysis and detection model structure 

4.2 Experimental parameter Settings 
Table 4 provides a detailed account of the specific parameters associated with the proposed 

framework. 
 

Table 4. Summary of parameter Settings for the proposed architecture 
Layer Parameter Used Value 

Embedding layer 
Input sequence length 

Embedding output dimension 
Sequence padding 

250 
50 

Zero padding 

XLNet layer 

Activation function 
Number of Hidden Units 

Dropout Probability 
Number of Hidden Layers 
Word Vector Dimension 

GeLu 
768 
0.1 
12 

768 

CBAM 

Number of filters 
Kernel size 

Activation function 
Number of pooling layer 

Pooling method 
Stride 

64 
3 

ReLu 
2 

Max pooling and Avg pooling 
1 

AttentionBiLSTM Number of Hidden Units 
Activation function 

128 
Tanh 

Fully connected layer 

Number of hidden layers 
Number of neurons 1 
Activation function 

L2 Regularizer 
Dropout Regularizer 
Number of neurons 2 
Activation function 

2 
128 

ReLu 
0.01 
0.5 
5 

Softmax 

Model compilation 
Optimizer 

Loss function 
Adam with a learning rate of 

1e-5 
CategoricalCrossentropy 

Others Number of epochs 
Batch size 

20/fold 
16 
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4.3. Evaluation metrics 
We used a suite of metrics commonly employed in classification problems to assess the 

model's efficacy, including accuracy, F1 score, and loss value. We selected the cross-entropy 
function as the model's loss function to quantify the discrepancy between the predicted and 
actual label distributions. Additionally, macro- and micro-averaging indicators were included. 

4.4 Experimental Results 
This section presents the results of the performance of the proposed model for the 

classification of malware API call sequences in the context of the detection task. 
Fig. 13 illustrates the model's F1-score, accuracy, and loss values on the EMBER dataset. 

The experiment uses a 10-fold cross-validation method, with each fold representing a subset 
of the data. The results for each fold are shown as separate line plots. As depicted in the figure, 
the F1-score increases significantly with additional training and stabilizes after four training 
cycles. The model's training accuracy reaches 93% in the first cycle, with slight fluctuations 
in the subsequent three cycles, but remains above 98%. In later cycles, the model's 
performance stabilizes, with accuracy consistently around 98%. Initially, the model exhibits a 
high loss value, which decreases steadily over time, stabilizing at approximately 0.02 after 
four training cycles. 

 

 
Fig. 13. MalEXLNet model test F1-score, Accuracy and Loss in EMBER 

 
The experimental results of the model on the Catak dataset are presented in Fig. 14. The 

figure shows that both the accuracy and F1-score of the model increase gradually during the 
first round of training. From round 2 to round 4, the accuracy exhibits a slight decreasing trend, 
after which the model's performance gradually stabilizes. Ultimately, the F1-score, accuracy, 
and loss stabilize at approximately 97%, 98%, and 0.05, respectively. 

 

 
 

Fig. 14. MalEXLNet model test F1-score, Accuracy and Loss in Catak 
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4.5 Comparison with the baseline model 
Table 5 and 6 present the macro- and micro-averaging metrics of the models on the EMBER 

and Catak datasets, along with comparative data against other baseline models. To ensure 
fairness, the parameters and experimental environments for the baseline models are kept 
consistent with those reported in the original studies. All models are evaluated using the dataset 
established in this paper. The macro- and micro-averaging metrics were also calculated for the 
baseline models to enhance the experiments' persuasiveness. These additions did not affect the 
models' performance. 

The baseline models selected for comparison are as follows: Sahil et al. [23] used ELMo, 
Word2Vec, and BERT for semantic feature extraction of API sequences, achieving high 
accuracy of up to 93% on their dataset. Γιαπαντζής et al. [24] proposed an enhanced model 
named XLCNN, which combines the size and structure of feedforward neural networks with 
input dimensions to improve semantic analysis of malware and address malicious code 
classification. Liu et al. [18] introduced SeMalBERT, a semantic-based malware intelligence 
model that leverages the pre-trained BERT model to extract semantic relationships in API call 
sequences. They also vectorize these sequences and construct a CNN-LSTM classification 
model with an attention mechanism for malware classification and detection. 

As illustrated in the preceding table, the proposed model achieves an accuracy of 98.85% 
on the test set, with an F1 score of 98.76%. The loss is minimal at 0.02, and macro and micro 
average indicators are above 98%. For comparison, other baseline models use deep learning 
methods for feature extraction. Among these, Γιαπαντζής et al. proposed an innovative word 
embedding processing method tailored to API sequence characteristics, achieving notable 
results. Liu et al. employed a hybrid deep learning model combining CNN and LSTM for 
feature extraction and classification, achieving better results than single deep learning models. 

These two tables show that the model proposed in this paper achieves an accuracy of 98.85% 
on the EMBER dataset, with an F1-score of 98.76% and a loss value of 0.3882. Both macro-
averaging and micro-averaging correlation indices exceed 98%. On the Catak dataset, the 
model achieves an accuracy of 94.46%, a loss value of 0.3287, and an F1-score of 92.13%. 
Other baseline models using deep learning methods for feature extraction also demonstrate 
notable performance. For instance, Γιαπαντζής et al. approached the problem with word 
vectors, proposing an innovative method tailored to API function call sequences, which 
yielded significant results. Liu et al. employed a hybrid deep learning approach, combining 
CNN and LSTM for feature extraction and classification, achieving superior results to single 
deep learning models. 

 
Table 5. Comparison of different baseline models in EMBER 

study Acc F1 Loss macro micro 
P R F1 P R F1 

Sahil [23] 0.9512 0.9485 0.6263 0.9502 0.9498 0.9425 0.9498 0.9462 0.9418 
Γιαπαντζή

ς[24] 0.9668 0.9635 0.5356 0.9638 0.9602 0.9597 0.9639 0.9613 0.9601 

Liu[18] 0.9756 0.9704 0.4216 0.9712 0.9701 0.9609 0.9708 0.9716 0.9612 
Proposed 

Model 0.9885 0.9876 0.3822 0.9872 0.9862 0.9860 0.9841 0.9832 0.9827 
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Table 6. Comparison of different baseline models in Catak 

study Acc F1 Loss macro micro 
P R F1 P R F1 

Sahil [23] 0.8613 0.8523 0.8763 0.8465 0.8458 0.8460 0.8596 0.8436 0.8519 
Γιαπαντζή

ς[24] 0.8836 0.8759 0.7856 0.8657 0.8625 0.8653 0.8863 0.8769 0.8627 

Liu[18] 0.9236 0.9216 0.5016 0.9136 0.9132 0.9135 0.9223 0.9165 0.9162 
Proposed 

Model 0.9446 0.9213 0.3287 0.9243 0.9210 0.9226 0.9446 0.9436 0.9448 

4.6 Performance comparison of different word embedding models 
We conduct comparative trials, including those with traditional and emerging pre-trained 

language models, to show that our EXLNet model performs better in the semantic analysis of 
malware API call sequences. 

Table 7 and 8 present the detailed experimental results of the three-word vector models on 
the EMBER and Catak datasets. The tables indicate that the XLNet model achieves the best 
performance in terms of accuracy and loss. Furthermore, the model proposed in this paper also 
attains superior results in both macro-averaging and micro-averaging evaluation metrics. 

 
Table 7. Comparison results of different word vector models in EMBER 

Model Average macro micro 
Acc F1 Loss P R F1 P R F1 

Embedding 0.7978 0.7937 0.8780 0.8593 0.7930 0.823
6 0.7976 0.7946 0.7954 

XLNet 0.9379 0.9340 0.1700 0.9400 0.9363 0.938
0 0.9356 0.9368 0.9362 

EXLNet 0.9620 0.9596 0.1092 0.9609 0.9603 0.960
6 0.9649 0.9627 0.9618 

 
Table 8. Comparison results of different word vector models in Catak 

Model Average macro micro 
Acc F1 Loss P R F1 P R F1 

Embedding 0.7978 0.7937 0.8780 0.8593 0.7930 0.8236 0.7976 0.7946 0.7954 
XLNet 0.9379 0.9340 0.1700 0.9400 0.9363 0.9380 0.9356 0.9368 0.9362 

EXLNet 0.9620 0.9596 0.1092 0.9609 0.9603 0.9606 0.9649 0.9627 0.9618 

4.7 Ablation experiment 
The experimental results in Table 9 and 10 demonstrate that our proposed model effectively 

leverages the strengths of each sub-module—the absence of any sub-module results in a 
noticeable degradation in the model's performance. For clarity, each model configuration is 
designated as Models 1 through 7, as outlined in Table 9. 
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Table 9. Results of ablation experiments in EMBER 

Algorithm Acc F1 Loss macro micro 
P R F1 P R F1 

Dense 0.9580 0.9547 1.012 0.9589 0.9568 0.9578 0.9579 0.9567 0.9588 
CNN 0.9623 0.9588 0.4320 0.9650 0.9623 0.9635 0.9612 0.9628 0.9635 

CBAM 0.9713 0.9694 0.9627 0.9721 0.9705 0.9713 0.9704 0.9716 0.9728 
BiLSTM 0.9810 0.9799 0.4712 0.9808 0.9803 0.9805 0.9806 0.9810 0.9808 
Attention 
BiLSTM 0.9826 0.9814 0.4718 0.9826 0.9819 0.9822 0.9821 0.9828 0.9816 

CBAM+ 
BiLSTM 0.9829 0.9817 0.4722 0.9831 0.9823 0.9827 0.9828 0.9831 0.9823 

CBAM+ 
Attention 
BiLSTM 

0.9885 0.9876 0.3822 0.9872 0.9862 0.9860 0.9841 0.9832 0.9827 

 
In Model 1, the feature vectorization matrix derived from the semantic analysis of the 

EXLNet model is directly input into the fully connected layer, which performs classification 
and detection tasks. Model 2 extends Model 1 by incorporating a convolutional neural network 
(CNN) to extract local features. Comparing the results of Model 2 with Model 1 highlights the 
effectiveness of CNNs in local feature extraction. Model 3 builds on Model 2 by integrating 
spatial and channel attention mechanisms through the CBAM module. Results show that 
incorporating these attention mechanisms significantly enhances the model's feature extraction 
capabilities, ensuring critical features receive more attention. Model 4 advances beyond Model 
1 by adding a bidirectional LSTM (BiLSTM) layer to filter and retain historical information, 
capture long-term dependencies, and improve the model's ability to learn semantic 
relationships in malware API call sequences. Model 5 further improves Model 4 with an 
adaptive attention mechanism, allowing the model to capture essential features better and 
enhance its learning capability. Models 6 and 7 combine advanced text feature extraction 
methods and achieve higher accuracy than the previous models. 

 
Table 10. Results of ablation experiments in Catak  

Algorithm Acc F1 Loss macro micro 
P R F1 P R F1 

Dense 0.8723 0.8698 1.582 0.8802 0.8765 0.8659 0.8712 0.8802 0.8698 
CNN 0.9018 0.8965 1.2314 0.8996 0.8856 0.8849 0.8963 0.8954 0.9001 

CBAM 0.9054 0.9038 0.9489 0.8979 0.8896 0.8893 0.8996 0.8941 0.9010 
BiLSTM 0.9219 0.9220 0.6512 0.9208 0.9210 0.9118 0.9206 0.9118 0.9028 
Attention 
BiLSTM 0.9326 0.9310 0.4738 0.9302 0.9330 0.9298 0.9287 0.9222 0.9279 

CBAM+ 
BiLSTM 0.9429 0.9412 0.4136 0.9298 0.9396 0.9829 0.9402 0.9425 0.9436 

CBAM+ 
Attention 
BiLSTM 

0.9446 0.9213 0.3287 0.9243 0.9210 0.9226 0.9446 0.9436 0.9448 

5. Conclusion and Outlook 

This paper proposes an intelligent malware analysis and detection method based on 
semantic analysis. This method leverages the improved pre-training model XLNet and the 
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hybrid deep learning model CBAM+AttentionBiLSTM to accurately detect malware API call 
sequences. We first extract API function call sequences of malware using static and dynamic 
analysis techniques and construct a dataset by classifying the malware by family. Next, we 
perform semantic feature vectorization of the API sequences in the dataset using the word 
vector model XLNet and input the resulting feature vectors into the 
CBAM+AttentionBiLSTM model for training. Finally, we use the Softmax method to classify 
the malware families. The rationale and efficiency of the proposed model are validated through 
comparisons with various word embedding techniques and ablation experiments. The 
experimental results show that the MalXLNet method excels in malware detection, achieving 
higher accuracy than other baseline models and traditional methods and maintaining stable 
performance despite variations in software and system environments. 
Despite our remarkable research results, some pressing issues remain: 

1. The interpretability of the proposed models could be more straightforward, posing a 
significant challenge in deep learning. Future research should prioritize enhancing model 
interpretability and exploring methods to improve transparency and comprehensibility. 

2. The extended training time challenges efficiency in practical applications. Therefore, 
future research should focus on developing lightweight models that reduce computational 
overhead while maintaining high accuracy. 

3. Further research is needed to validate the model's robustness across different 
environments, thereby improving its generalization capabilities for practical use. 
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