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Abstract 

 
Considering the intricate and ever-changing nature of the marine environment and the diverse 
range of sizes for targets involved in marine ship target recognition, which present challenges 
in detecting specific targets, a marine ship target detection algorithm has been developed based 
on an enhanced iteration of YOLOv5. Initially, the integration of dynamic snake convolution 
(DySnakeConv) into the feature extraction network and subsequent enhancement of the C3 
module based on this integration were implemented. This integration enables dynamic 
adjustments based on the input image size, adaptive fusion of feature sequences, and resolution 
of accuracy and continuity issues during the recognition process. Subsequently, a novel hybrid 
encoder (FSI) was devised, utilizing target scale characteristics to enhance the extraction 
capability of multi-scale information, facilitating effective detection and recognition of objects 
within images. Finally, we selected the Shape-IOU bounding box loss function to mitigate 
fixed target frame issues and enhance target detection accuracy. Experimental evaluations 
were conducted utilizing the Infrared Maritime Ship dataset. The results demonstrated that our 
enhanced model achieved a prediction accuracy of 93.8% and an average precision (mAP) 
value of 93.89%, surpassing YOLOv8s by 1.2% and 1.8%, respectively. Moreover, there was 
an increase in recall rate by 2% compared to YOLOv8n while reducing parameters from 
10,473,392 to 6,549,901 only. The computational load decreased by 6.3 GFLOps compared 
with YOLOV8n, resulting in better performance in ocean target detection and recognition. 
 
Keywords: Dynamic snake convolution, hybrid encoder, loss function, target detection, 
YOLOv5. 
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1. Introduction 

With the national emphasis on and promotion of the marine economy in the "14th Five-Year 
Plan" and the acceleration of efforts to build a strong marine nation, there has been a significant 
increase in the number and types of ships. This trend has led to heightened demands for early 
warning systems for vessels at sea. However, China's current technical capabilities in marine 
information monitoring and early warning require further enhancement, particularly in visual 
information acquisition by marine buoys. The limitations in this capacity hinder the diversity 
and accuracy of marine information monitoring. Furthermore, environmental factors such as 
fog, sea mist, and strong winds can substantially impact the quality and clarity of target images 
collected at sea, potentially resulting in information loss and misidentification of marine 
images. Traditional target detection algorithms, which typically rely on features and classifiers, 
may introduce redundancies in the detection window and are not well-suited for ship detection 
under these conditions. Therefore, it is imperative to explore deep learning-based models for 
marine target detection algorithms. 

Conventional target detection methods typically involve using a sliding window traversal 
technique to identify potential regions, followed by manually designing a feature operator. 
Subsequently, the operator is used to refine the feature set, and then a classifier is developed 
to categorize the features and ultimately select the optimal box. In contrast, target detection 
methods based on deep learning leverage convolutional neural networks (CNN) to 
autonomously extract feature details from images. These methods then identify target 
information based on the extracted features, resulting in the acquisition of more 
comprehensive semantic features [1]. This approach enhances adaptability in detecting 
changes in mandates. 

Deep learning-based target detection can be classified into two categories: "two-stage" 
[2] and "single-stage" [3,4,5,6]. These categories are based on the presence or absence of an 
explicit Region of Interest (RoI) extraction process. Single-stage models, pioneered by the 
YOLO series [7] and further developed in models like SSD [8], directly forecast the category 
and location of the target object through regression, albeit with slightly lower accuracy. The 
YOLO family of algorithms, from YOLOv2 to YOLOv10 [9-17], has enhanced the accuracy 
and detection speed of single-stage target detection models. On the other hand, "two-stage" 
target detection approaches exemplified by the R-CNN [18] series offer higher detection 
accuracy but at the cost of slower computation speed. Subsequent models such as SPPNet [19], 
Fast R-CNN [20], and Faster R-CNN [21] have been introduced to address excessive 
computation issues. Nevertheless, current advancements in algorithms still fall short of 
meeting demands for real-time detection. 

The complex, diverse, and unpredictable nature of the marine environment poses 
significant challenges in identifying and monitoring marine objects. Target detection, a 
fundamental task in visual recognition, involves the identification and localization of a target 
within an image. Currently, target detection systems commonly rely on two standard 
architectures: convolutional neural network (CNN)-based and Transformer-based [22]. In the 
field of ship detection at sea, widely used algorithms include the R-CNN family, SSD, YOLO, 
RetinaNet [23], and DETR [24]. The Transformer-based object detector (DETR) 
[25,26,27,28,29] streamlines the target detection process and facilitates end-to-end target 
detection. More recently, RT-DETR [30] has been proposed for real-time target detection 
while DINO [31] has demonstrated substantial advancements in results. The primary 
contributions are outlined as follows: 
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• A novel hybrid encoder (FSI) has been developed to address the varying scale 
characteristics of the target. This approach enhances the network's capability to extract multi-
scale information and effectively converts multi-scale features into a sequence of image 
features. Consequently, it enables accurate detection and identification of objects within 
images. 

• Incorporating Dynamic Snake Convolution (DySnakeConv [32]) into the feature 
extraction network and enhancing the C3 module based on Dynamic Snake Convolution 
enables dynamic adjustments based on the input image size. This adaptation allows for 
adaptive fusion of feature sequences and helps to address precision and consistency challenges 
encountered during the recognition process. 

• The study has calculated the optimal scaling factor for the Shape-IOU [33] loss function, 
tailored to the specific dataset. This calculation addresses the issue of a fixed target frame and 
enhances the detection of small targets. 

 

2. Basic principles of YOLOv5 
The YOLO series of algorithms is currently widely utilized for target detection and 
demonstrates exceptional performance in real-time maritime scenarios. YOLOv5 is a single-
stage object detection algorithm based on single-stage deep learning, comprising four main 
components: the Input, the Backbone, the Neck, and the Predictor. This study adopts 
YOLOv5s as a benchmark, incorporating data augmentation, the deep convolutional network 
CSPDarknet53 architecture, the SPPF module, the FPN [34] structure, and the anchor frame 
predictor module. The architecture of Yolov5 is illustrated in Fig. 1. 

Commonly utilized path aggregation blocks in object detection models include FPN, 
NASFPN [35], BiFPN [36], ASFF [37], and SFAM [38]. YOLOv5 typically employs a CSP 
structure and SPP layer for feature extraction, and PANet [39] for fusion across different scales. 
The input module resizes the input image to the required fixed size and can also perform data 
augmentation, adaptive anchor boxes, and multi-scale training to improve model performance. 
The backbone network extracts features from the input image and enhances feature 
representation through fusion to provide more precise information for target detection. The 
neck network integrates the extracted features and transfers them to the head network for 
prediction, generating feature maps of varying sizes. Its feature fusion capabilities contribute 
to enhancing the model's detection accuracy. 
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Fig. 1. YOLOv5 basic principles. 

 
 

3. Improved YOLOv5 detection model 

3.1. Overall network architecture 

In this paper, an algorithm called Feature Sequence Interaction (FSI-YOLO) is proposed based 
on the enhanced YOLOv5n target detection network. The architecture of the proposed 
algorithm is presented in Fig. 2. 
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Fig. 2. FSI-YOLO structure. 

 
The YOLOv5n model has been enhanced for improved detection of small offshore vessels, 

which can be challenging to accurately identify. This enhancement involved the integration of 
the C3 module and DySnakeConv to form the new C3_DySnake module, replacing a portion 
of the traditional Conv and enabling adjustment of convolutional parameters. By employing a 
scale transformation method to modify image size, the convolutional parameters can capture 
the structural characteristics of targets from different perspectives, thereby enhancing 
detection accuracy. Furthermore, the neck network (Neck) has been strengthened with a novel 
hybrid encoder (FSI), primarily consisting of the AIFI module and SSFF module to effectively 
convert multi-scale features into image features. The feature sequences are then fused 
adaptively using DySnakeConv, with the AIFI module enhancing correlation among different 
scales and reducing computational redundancy. Additionally, the SSFF module combines 
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spatial and scale features to consolidate essential information at various scales while focusing 
on marine target characteristics. This method improves the network's ability to extract multi-
scale information and efficiently convert multi-scale features into a series of image features, 
resulting in accurate object detection and identification within images. Finally, the 
implementation of Shape-IOU bounding box loss function instead of CIOU reduces 
background interference by evaluating overlaps, thereby improving bounding box regression 
accuracy and strengthening model resilience. The research utilized the publicly available 
Infrared Maritime Ship dataset [40]. 

3.2. Hybrid Encoder 
Currently, the deformable attention mechanism reduces computational costs to some extent. 
However, the fusion of multi-scale features leads to a notable increase in the input sequence 
length, imposing a substantial computational burden on the encoder. To address these 
challenges, this paper introduces a novel hybrid encoder FSI network architecture. The 
proposed model comprises two primary components: the intra-scale feature interaction (AIFI) 
module and the attentional scale sequence fusion (SSFF) module. These components 
efficiently convert multiscale features into image feature sequences to provide complementary 
information for marine vessel target recognition. The AIFI module enhances connectivity 
across different scales and reduces computational redundancy by facilitating intra-scale 
interaction of high-level semantic features. On the other hand, the SSFF module fuses attention 
scales across sequences, which aggregates crucial information at various scales by fusing 
spatial and scale features. Transformer, a robust tool for processing sequence data, is utilized 
to extract feature information and accelerate the processing of multi-scale features. The study 
presents various Transformer variants with diverse encoder types: (a) a traditional connection 
lacking a Transformer encoder, (b) an insertion of a single-scale Transformer encoder 
comprising a layer of Transformer blocks. Each scale's features leverage a shared encoder for 
intra-scale feature interactions, linking the resulting multi-scale features. Additionally, (c) 
cross-scale feature fusion is introduced, where cascaded multiscale features are inputted into 
the encoder for feature interaction. Lastly, the new hybrid encoder FSI continuously optimizes 
intra-scale interaction and cross-scale fusion of multi-scale features. Initially, a single-scale 
Transformer encoder is introduced to enable internal interaction of features within each scale 
for intra-scale interaction, followed by cross-scale fusion. The four encoders are depicted in 
Fig. 3, where SSE represents the single-scale encoder module and MSE represents the multi-
scale encoder module.  
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Fig. 3. Existing encoders and our encoders. 

3.3. Dynamic snake convolution 
Traditional convolutional feature extraction is well-known for its robustness and parameter 
sharing. However, it faces challenges in accurately capturing the structural characteristics of 
various targets. On the other hand, dynamic serpentine convolution (DSConv) is characterized 
by its adaptive nature, allowing it to effectively capture structural features by focusing on 
elongated and zigzagging local structures. This enables DSConv to better accommodate 
various target shapes. Additionally, DSConv incorporates offsets for deformations, which can 
be used to select the processing location for each target based on the input feature maps to 
learn deformations. Using an iterative approach, DSConv sequentially processes each target 
by selecting subsequent positions to observe, ensuring consistent attention without excessively 
expanding the sensory field due to significant deformation offsets. 

In the original YOLOv5 feature fusion network, the C3 module has a fixed input size and 
only supports the same input resolution as the training image. It utilizes a fully connected layer 
for prediction, resulting in reduced processing efficiency. The newly designed C3_DySnake 
module addresses this limitation by being able to adapt to input images of various sizes, 
thereby enhancing its adaptability to inputs of different sizes and improving ship target 
detection performance and speed. The main improvements of this module include: 1) 
Replacement of the traditional convolution module with the DySnakeConv convolution layer, 
which can dynamically adjust the position of the convolution kernel. This comprises two 
traditional Conv convolutions and two DSConv modules. 2) Employing DSConv convolution 
to capture diverse features of the target image. Further details are illustrated in Fig. 4. 
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Fig. 4. Comparison between C3 and C3_DySnake. 

 
Dynamic Snake Convolution introduces a novel approach to replace traditional convolution 

methods. It dynamically adjusts the shape and position of the convolution kernel based on the 
characteristics of the input image, allowing for adaptive modifications of the anchor frame. 
While DySnakeConv entails a significant computational burden, experiments indicate that 
leveraging the parallel processing capabilities of GPUs can accelerate the dynamic 
convolution process. Furthermore, conducting layered computations on distinct feature layers 
ensures efficient utilization of computational resources, enabling effective detection of various 
targets. The specific workflow involving Feature Selection and Integration (FSI) and 
DySnakeConv is depicted in Fig. 5 below. 

 

 
 

Fig. 5. Network Diagram. 
 

3.4. Loss function 
In the field of target detection, the loss function is used to measure the difference between the 
predicted value of the model and the ground truth. However, traditional IOU loss functions 
often do not consider the impact of anchor frames on regression performance. In marine 
environments, ship targets are often small in size, making it difficult for conventional loss 
functions to effectively detect them while being susceptible to background disturbances. To 
address these limitations, we have adopted Shape-IOU Loss [33], which better handles ship 
target boundaries by optimizing spatial overlap between predicted bounding boxes and ground 
truth annotations. This approach minimizes shape discrepancies and is particularly 
advantageous for objects with complex shapes or varying aspect ratios. Simultaneously, 
Shape-IOU Loss mitigates background interference and enhances model resilience through 
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overlap assessment. The performance improvement can be attributed to the Shape-IOU loss 
function's ability to prioritize overall overlap between predicted and ground truth bounding 
boxes, resulting in better alignment and reducing the likelihood of misclassifying partially 
occluded or irregularly shaped objects. Additionally, using Shape-IOU as our chosen loss 
function helps achieve a more consistent training process by focusing on the end-goal metric 
(IOU), which directly correlates with detection performance. To accommodate target samples 
of different sizes, we experiment with various Shape-IOU metrics for computing the loss 
function while introducing a scale factor to accurately evaluate model performance across 
different scales. In summary, incorporating the Shape-IOU bounding box loss function has 
significantly enhanced our target detection model precision. By specifically addressing the 
overlap between predicted and ground truth bounding boxes, this loss function effectively 
mitigates inherent limitations associated with conventional loss functions. 

 

 
Fig. 6. Shape-IOU principle. 

 
When considering the geometric constraints between the ground truth (GT) box and the 

prediction box, Shape-IOU calculates the loss by adjusting the scale of the anchor box itself. 
This adjustment enhances the accuracy of anchor box regression. It has been experimentally 
determined that Shape-IOU is linked to a scale factor, which represents the scale of the target 
in the dataset. In our experiment, we observed that prediction accuracy peaks when the scale 
factor is 0.8, but there is a slight decrease in mean average precision (mAP) compared to a 
scale factor of 0.0. However, as opposed to a scale factor of 0.0, prediction accuracy 
significantly decreases as the scale factor increases. As the scale factor progressively increases, 
both prediction accuracy and other related metrics decline to varying extents. The relationship 
can be expressed as follows: 
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Where B and Bgt represent the prediction box and GT box respectively, where the scale 
factor (scale) is associated with the target's scale in the dataset. w and refer to the width and 
height of the anchor box.θ  refer to the cost of the shape and its value is unique for each dataset, 

in which the parameter is set to 4. shapeΩ is the shape cost. 
shapedistance is the distance of the 

shape. Shape IoUL − is the bounding box regression loss. 

4. Experiments and analysis 

4.1. Experimental settings and datasets 
The hardware configuration of this experiment is NVIDIA Tesla V100 SXM2 (32GB) GPU 
for hardware configuration, Ubuntu 20.04 as the operating system, and Pytorch as the deep 
learning framework. The experiment was conducted under the environment of CUDA 11.6, 
conda 23.7.2, Python 3.8.12, and Pytorch 2.1.0 for GPU training. To optimize the utilization 
of computing resources during network training, a batch size of 16, a learning rate of 1e-4, 8 
workers, and 300 epochs were set. Additionally, the Adam algorithm and SGD optimizer were 
employed for model optimization during training. 

In this study, we conducted a comparative analysis of various datasets, focusing on their 
types, images, and labeling information. Following the comparison, we identified the Infrared 
Maritime Ship dataset as the most suitable option. Detailed comparison results are presented 
in Table 1. 

 
Table 1. Comparison of different datasets 

Dataset Types Images Instances 

Maritime Ship 5 4760 15265 

Ship-detection 5 7690 21057 

Infrared Maritime Ship 7 8402 21638 
 
In this study, we utilize the Infrared Maritime Ship Target Detection Database in a real 

maritime defense scenario to evaluate the effectiveness of the infrared target detection 
algorithm under real-world conditions. The database covers a range of scenarios, time periods, 
and resolutions within maritime environments, including sea, harbor, and coastal settings with 
various types of vessels such as cruise ships, bulk carriers, warships, sailing boats, kayaks, 
container ships, and fishing boat targets, totaling 9400 images. 

The dataset contains images of different sizes: 384*288, 640*512, and 1280*1024. Once 
the dataset has been selected, it undergoes preprocessing procedures aimed at enhancing 
training data diversity by generating additional samples through flipping and cropping 
techniques. 

4.2. Criteria for outcome evaluation 
To evaluate the practical effectiveness of the proposed model, this study utilizes metrics such 
as precision (P), recall (R), mean average precision (mAP) across all categories, number of 
parameters, and GFLOPs. These metrics are employed to assess the performance of the 
improved algorithmic model. Specifically, accuracy (P) and recall (R) are calculated using the 
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formulas (4)-(6) provided below: 
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In Eq. (4) and Eq. (5), TP represents the correctly predicted target in the detection result, 
FP denotes the incorrectly predicted target, and FN refers to targets not detected by the model. 
The mean Average Precision (mAP) combines precision (P) and recall (R) for n categories, 
offering a more comprehensive evaluation of the network's performance. The average 
precision mAP is defined as follows: 
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When evaluating the performance of a model, it is important to consider both its detection 
effect and the size of the model. The size of the model is determined by the number of 
parameters, which is a key metric. The number of parameters in the model has a positive 
correlation with its fitting capacity; in other words, a higher number of parameters indicates 
better fitting ability but also implies a greater demand for computational and storage resources. 

4.3. Analysis of experimental results 

4.3.1. Detection algorithm comparison experiment 
To demonstrate the effectiveness of the FSI-YOLO model, this study has employed a more 
advanced target detection model for comparison. The experimental results for target detection 
in the marine infrared dataset are presented in Table 2. 

In terms of detection accuracy, each detection metric of the FSI-YOLO model outperforms 
the current network model, with mAP@0.5 reaching 93.89%, mAP@0.5:0.95 at 63.9%, and 
the R index at 90.3%. Compared to the latest detection models, FSI-YOLO exhibits superior 
detection accuracy and outperforms existing models. 

 
Table 2. Comparison of different detection algorithms 

Models P/% R/% mAP@0.5/% mAP@0.5:0.95/% Params/M 
Faster R-CNN 82.1 75.3 80.8 60.5 41.7 

SSD 83.5 78.7 84.1 61.1 24.4 
YOLOv3-tiny 84.6 78.6 83.6 61.3 8.69 

YOLOv5s 93.1 89.9 89.2 62.5 7.03 
YOLOv7-tiny 85.4 79.3 84.5 62.7 6.02 

YOLOv8s 92.6 88.8 92.1 63.5 11.1 
TPH-YOLOv5 93.5 90.1 91.2 62.8 36.9 

YOLOv9s 92.1 89.7 93.4 63.5 9.93 
YOLOv10s 92.8 90.5 93.3 63.7 8.07 

FSI-YOLO(ours) 93.8 90.3 93.9 63.9 10.4 
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Table 2 illustrates that FSI-YOLO demonstrates superior performance in precision and 
recall compared to both YOLOv9 and YOLOv10. Additionally, the mean average precision 
of FSI-YOLO is 93.9%, which significantly outperforms that of YOLOv9 and YOLOv10. This 
indicates that FSI-YOLO exhibits enhanced detection accuracy and recall across a variety of 
target detection tasks. In contrast, Yolov9 shows diminished detection accuracy in complex 
backgrounds and with multi-scale targets, thereby positioning FSI-YOLO as an optimal 
solution for such scenarios. On the other hand, Yolov10 imposes excessive computational 
demands. To address this issue, the proposed model incorporates the FSI module, which 
reduces processing intensity while achieving a noteworthy improvement in computational 
accuracy compared to the aforementioned YOLOv9 and YOLOv10 models. 

Table 3 presents the specific accuracy, recall, mAP50, and mAP50:0.95 values for each 
behavioral type. The highest detection rates are observed for bulk carriers, container ships, and 
warships across all three behavioral types. Furthermore, these first three behavioral types are 
more frequently labeled, exhibit higher shape similarity, and pose greater challenges in terms 
of detection. As a result, the accuracy for these types is slightly weaker compared to the last 
three behavioral types. Nevertheless, the anticipated detection effect is still achieved. 

 
Table 3. Infrared Maritime Ship’s FSI-YOLO training and testing results 

class P/% R/% mAP50/% mAP0.5:0.9/% 
all 93.8 90.3 93.9 63.9 

liner 93.5 84.8 89.6 52.2 
bulk carrier 97.3 94.4 97.2 75.8 

warship 96.3 99.4 99.2 80.9 
sailboat 92.9 89.1 92.1 54.4 
canoe 85.5 83.3 85.3 49.2 

container ship 98.3 97.9 98.4 81.5 
fishing boat 92.4 82.7 88.6 47.2 

 
In the context of the Shape-IOU loss function, the selection of the scale (or scale factor) 

significantly influences detection accuracy, which is dependent on the scale of the target object 
in the dataset. A comparative experiment was conducted to determine the most appropriate 
scale factor. Five groups with different scale factors were established for evaluation, as shown 
in Table 4.  The experimental results indicate that when the scale is set to 0.0, the mAP@0.5 
value of the improved model reaches 93.9%, exhibiting superior mean accuracy compared to 
other groups. It has been concluded that choosing a scale factor of 0.0 leads to significant 
improvements in results for this experimental dataset.  
 

Table 4. The impact of different scales on the detection performance 
scale P /% R/% mAP@0.5/% mAP@0.5:0.95/% 
0.0 93.8 90.3 93.9 63.5 
0.4 92.3 88.5 92.9 61.5 
0.6 91.5 88.2 92.6 62.1 
0.8 89.8 88.6 93.1 62.3 
1.0 89.5 86.4 92.3 60.5 
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4.3.2. Ablation experiment 
The purpose of this study is to gain a deeper understanding of the impact of improved modules 
and their combination with other improved modules on enhancing the performance of the 
original model. In this paper, we present the results of ablation experiments. Table 5 
summarizes the recognition accuracy, demonstrating that each improvement module has led 
to a noticeable enhancement in the model's performance, as seen in its increased accuracy (P), 
recall (R), and average precision (mAP). The AIFI and DySnake modules have improved 
model accuracy and recall rate, respectively, validating their effectiveness in detecting small 
vessels. The incorporation of three forms of attention within the DySnake module has resulted 
in a significant increase in accuracy, recall, and average precision. Although combining 
multiple modules (e.g., AIFI, SSFF, and DySnake) has potential to enhance model accuracy, 
it may also have implications for frames per second (FPS) and model size. Ultimately, 
integrating diverse modules allows us to utilize and enhance their individual strengths to 
optimize overall model performance.  
 

Table 5. Ablation experiment 

Models P/% R/% 
mAP@0.5

/% 
mAP@0.
5:0.95/% 

GFLOPs Parameters 

Baseline 92.4 89.1 89.2 62.5 15.8 7029004 
+SSFF 92.6 87.5 91.7 59.5 17.9 7267596 
+AIFI 92.9 89.2 92.1 62.9 15.7 7162636 

+DySnake 92.8 89.3 92.5 62.7 19.5 9849928 
+AIFI+DySnake 93.2 89.3 92.2 61.8 19.2 9204228 
+AIFI+DySnake 

+Shape_IOU 
93.0 89.5 92.6 63.3 19.2 9204228 

+ SSFF+DySnake 
+Shape_IOU 

93.4 90.1 93.2 63.5 19.1 8551924 

+AIFI+SSFF(FSI)+Sh
ape_IOU 

92.4 89.3 92.9 61.9 18.0 7410604 

+AIFI+SSFF(FSI)+D
ySnake+Shape_IOU 

93.8 90.4 93.9 63.9 22.6 10473392 

 
It is evident from Table 5 that the AIFI and SSFF modules have the capability to reduce 

the complexity of calculations and the number of parameters needed. The FSI, which 
encompasses these two modules, effectively reduces the model's complexity. In contrast, the 
network incorporating the DySnake module shows higher calculation complexity. While the 
calculation complexity of the network containing DySnake is relatively high, it does improve 
calculation accuracy and mAP accuracy, especially in the ablation experiments conducted by 
the SSFF module in the FSI hybrid encoder. DySnake addresses accuracy and continuity issues 
in the recognition process, demonstrating an improvement in mAP@0.5 accuracy by 1.8% and 
a dynamic adaptation to targets of varying sizes. The accuracy of FSI module decreases 
without DySnake, although approximately 30% fewer parameters are required. Thus, it can be 
inferred that employing FSI represents an effective approach for reducing model complexity. 
The combination of FSI and Snake in this discussed model effectively reduces complexity 
while increasing target detection accuracy even with an increase in model parameters within 
acceptable limits. Furthermore, the Shape-IOU Loss is effective for detecting ship targets 
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against complex backgrounds such as ocean background through measuring shape overlap 
between predicted frames and real frames thereby enhancing detection efficacy while 
mitigating background interference impact. Fig. 7 illustrates how two different algorithms 
affect target recognition – (a) depicts YOLOv5s algorithm’s detection result; (b) showcases 
FSI-YOLO algorithm’s detection result. 

 

 
(a) YOLOv5s (left) and FSI -YOLO (right) 

 
(b) YOLOv5s (left) and FSI -YOLO (right) 
Fig. 7. Existing encoders and our encoders. 

5. Discussion 
This paper presents an enhanced target detection model, FSI-YOLO, which is specifically 
designed to address the challenges associated with marine target detection. These challenges 
include environmental complexity, performance issues, and computational burden. The model 
incorporates a unique hybrid encoder, FSI, which integrates dynamic serpentine convolution 
and Shape-IOU loss techniques to significantly improve the accuracy and efficiency of target 
detection. Firstly, a novel hybrid encoder FSI is designed to effectively handle multiscale 
features, enabling the model to efficiently detect and recognize objects in images. Secondly, 
the dynamic snake convolution is selected as a replacement for traditional convolution, 
allowing adaptive adjustment of anchor frames for recognizing different targets. Additionally, 
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the C3 module is enhanced based on the DySnake convolution to perform adaptive feature 
sequence fusion. Finally, Shape-IOU Loss is adopted as the loss function for the FSI-YOLO 
model, which not only enhances accuracy but also improves detection efficiency. 
Experimental results on the Infrared Maritime Ship dataset demonstrate that the FSI-YOLO 
model outperforms YOLOv5 in terms of target detection with an accuracy rate of 93.8%. The 
FSI-YOLO model employs a hybrid encoder to manage multiscale features, thereby enhancing 
target detection in complex environments. Nevertheless, it is essential to enhance the diversity 
of training and validation data by utilizing a range of datasets to improve the model's 
generalization ability and achieve highly accurate detection in extreme and variable marine 
settings. While FSI-YOLO demonstrated satisfactory performance in experimental scenarios, 
its real-time operational capabilities on constrained devices at the ocean's edge may still be 
limited. Further research should focus on improving the computational efficiency of dynamic 
convolution or exploring alternative approaches with reduced computational requirements to 
ensure real-time performance in practical applications and facilitate broader deployment 
across diverse fields. It is anticipated that continuous improvement and optimization will 
enable FSI-YOLO to achieve greater accuracy and efficiency in target detection in complex 
environments, thereby providing robust support for maritime safety monitoring and other 
related sectors. 
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