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Abstract 

 
Massive multiple-input multiple-output (MIMO) has emerged as a pivotal technology to 
address the escalating communication demands of Internet of Things (IoT). To meet the data 
transmission needs in IoT systems, we propose an antenna selection method of massive MIMO 
systems and joint power allocation strategy considering IoT user devices grounded in quantum 
energy valley optimization (QEVO) in this paper. The derivation of a maximum energy 
efficiency equation has been established to optimize system resources and provide high quality 
of service meeting the IoT user devices requirements. To tackle the nonlinear, multi-
constrained hybrid optimization challenge proposed for massive MIMO resource allocation in 
IoT systems, we introduce a quantum energy valley optimization algorithm. This algorithm 
harnesses the strengths of quantum computation and energy valley optimization (EVO) 
mechanisms. Simulations indicate that our proposed method can efficiently meet real-time 
user transmission requirements while markedly enhancing system energy efficiency. When 
compared with existing power allocation strategies and optimization algorithms applied in 
massive MIMO communication systems, our approach demonstrates superior performance. 
The proposed method demonstrates the highest performance across various simulation 
scenarios when applied to both allocation strategies and system energy efficiency. Our 
proposed method with highest performance can be properly used on massive IoT devices. 
 
 
Keywords:  Internet of Things, massive MIMO, antenna selection, power allocation, energy 
efficiency, QEVO 
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1. Introduction 

The swift progression of information technology has propelled social changes through 
mobile communication in unprecedented ways [1]. In order to address the growing demand, 
advancements in Internet of Things (IoT) technology are currently underway [2]. As an 
important innovation of 5G and 6G, massive multiple-input multiple-output (MIMO) employs 
numerous antennas at the base station (BS) [3-5]. The main idea behind massive MIMO is to 
use multiple antennas at each user terminal to simultaneously transmit and receive signals, 
which can significantly reduce the interference between different cells [6]. Massive MIMO 
technology can significantly improve the spectral efficiency and data rate of wireless 
communication system deployment of large-scale antennas to satisfy the demands for energy 
efficiency and real-time performance in IoT applications [7]. Moreover, massive MIMO can 
support vehicle-to-everything (V2X) communication, help unmanned aerial vehicle (UAV) 
communication, and achieve more efficient and secure transmission with intelligent reflecting 
surface (IRS) [8]. 

Due to the complex nature of wireless environments, the structure and optimization 
design of massive MIMO networks in IoT remain a compound challenge [9, 10]. Recently, to 
enhance system performance, multiple factors have been considered in massive MIMO IoT 
networks [11-15]. In [11], it introduced a cell-free massive MIMO IoT network model and led 
to the identification of a maximization problem concerning total spectral efficiency for joint 
control pilot and data power. In [12], researchers proposed a power allocation strategy based 
on the water-filling effect to restructure distributed IoT devices in massive MIMO systems. In 
[13], researchers leveraged the capabilities of massive MIMO technology to enhance the 
accuracy of channel estimation in near-field IoT environments. Authors proposed a co-
temporal co-frequency full-duplex massive MIMO system to address the high spectral 
efficiency demands within 6G mobile communication networks in [14]. Research on next-
generation wireless systems and IoT networks said cost-effective technologies are essential 
for massive MIMO [15]. 

While mobile communication offers significant convenience in production and daily life, 
it also escalates operating costs and carbon emissions [16]. Large scale antenna deployment at 
the BS inevitably increases system power consumption [17]. Consequently, research into 
energy efficiency (EE) issues in massive MIMO systems is particularly important [18, 19]. 
Implement of antenna selection can cut the complexity down of RF links in massive MIMO 
systems by selecting specific antennas to participate in information transmission [20]. This 
effectively reduces communication costs and system power consumption. The exhaustive 
method can achieve maximum system capacity by traversing all antenna subsets. It becomes 
impractical for massive MIMO systems due to the substantial computational volume of the 
exhaustive method, and makes it impossible to obtain an optimal antenna selection scheme in 
real time. In [21], an adaptive antenna design utilizing genetic algorithms (GA) was 
investigated for massive MIMO systems. While the method exhibited optimal energy 
efficiency at low signal-to-noise ratio (SNR), it fell at high SNR.  A methodology was 
proposed in [22], involving the selective use of signal-to-interference-noise ratio (SINR) 
values, utilizing both antenna index and angle of departure as feedback signals. The 
complexity and computation of the algorithm escalates due to the multitude of factors involved 
in antenna selection. Despite considering the wireless channel state information (CSI), 
accurately obtaining and utilizing CSI continues to be a significant challenge. Therefore, 
determining a reasonable antenna selection scheme that enhances system energy efficiency 
while maintaining system capacity and reliability remains a challenge for massive MIMO 
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systems [23].                      
On the other hand, power allocation can effectively mitigate inter-user interference 

caused by the near-far effect due to differences in transmission channels between users, 
thereby improving system capacity and reducing energy consumption. In [24], a power 
allocation method based on fractional programming was proposed, integrating fractional 
programming theory with continuous convex optimization problems, utilizing the Dinkelbach 
algorithm to obtain the optimal power allocation scheme. However, this approximate method 
is susceptible to local optimum. The resource optimization problem in wireless networks is 
typically articulated as a mixed-integer nonlinear programming problem, which presents 
significant challenges and often classified as NP-hard. Metaheuristic algorithm exhibits 
enhanced efficacy in addressing this problem. In [25], a joint channel assignment and power 
control strategy was proposed utilizing particle swarm optimization (PSO). In [26], to address 
resource allocation challenges within wireless networks, whale optimization algorithm (WOA) 
was employed. In recent years, energy valley optimization (EVO) has emerged as a potent 
method for continuous optimization, garnering widely attention [27]. Notably, conventional 
algorithms encounter difficulties in addressing high-dimensional problems within the realm of 
massive MIMO. There exists a notable absence of specialized algorithms for these issues. 

In summary, existing power allocation schemes for massive MIMO systems in IoT 
seldom consider transmission rate and power consumption on system energy efficiency 
comprehensively. In this paper, a joint intelligent antenna selection and power allocation 
method based on quantum energy valley optimization in view of the system EE of massive 
MIMO systems has been proposed. Simulation experiments show that the energy efficiency 
of the method offers a wider application potential compared to the Dinkelbach algorithm, 
metaheuristic algorithms, and other strategies. The main contributions of this paper are 
delineated as follows: 

• Considering the varying transmission demands from users across different time slots in 
practical communication systems, we establish a comprehensive model for intelligent 
antenna selection for massive MIMO uplink systems. Furthermore, we derive an 
equation which determine its maximum energy efficiency to achieve power allocation 
efficiently.  

• To enhance efficiency in problem-solving, we are inspired from the advantage of 
quantum theory [28] and energy valley optimization (EVO) mechanism designed 
quantum energy valley optimization algorithm (QEVO), involving the adaptive 
adjustment of the selection of antenna number utilized while the transmission power of 
user data at the BS. 

• Simulation results show that QEVO we proposed performs better compared with other 
metaheuristic algorithms. Besides, QEVO can not only be used in massive MIMO 
system, it’s a general algorithm which can also address other complicated problem in 
wireless communication systems. 

The remainder of our work is structured as follows: Section 2 shows the system model 
and provides an analysis of energy efficiency. A joint intelligent antenna selection and power 
allocation approach grounded in QEVO is introduced in Section 3. Analysis of energy 
efficiency derived from simulation results under various conditions is presented in Section 4, 
while the subsequent section, Section 5 concludes our discussion. 

Notation: In this paper, we indicate the following notation: Matrix and vector by boldface 
upper and lowercase letters respectively; [ ]⋅  represents the statistical average; superscripts 

T( )⋅  and H( )⋅  denote transpose and conjugate transpose, respectively; || ||⋅  and | |⋅  denote the 
Euclidean norm,  respectively; NI  denotes identity matrix.  
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2. System Model and Analysis 
Fig. 1 illustrates a single-cell massive MIMO system in IoT, comprising one base station 
equipped with K  antennas and E  single-antenna IoT devices. Assume that the location of 
user is randomly distributed within the base station coverage area. To facilitate energy 
conservation, we have chosen a subset of antennas for participation in the communication 
process, taking the specific requirements of the practical system into consideration. It is 
assumed that power allocation is not necessary for antenna systems that are not required during 
data transmission. The antenna selection strategy is elaborated in the subsequent section. 
Suppose sK  antennas are chosen at the base station, sK K≤ .  

 
Fig. 1. The massive MIMO IoT communication systems 

 
In massive MIMO uplink system, the CSI [11, 12, 18, 19] between the  the IoT device 

and the base station can be expressed by 
 eβ=e eg h  (1) 

where 1 sK×∈eg , 1 sK×∈eh , 1,2,...,e E= , eh  is the small-scale fading vector from device e  
to the BS, (0, ) 

se Kh I . eβ  represents the large-scale fading factor from IoT device e  
to the BS. eβ  can be obtained by 
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where er  represents the distance between device e  and the BS, 0r  is the reference distance 
which is equivalent to the radius of the BS, whereas 0v  denotes the path loss exponent [19]. 

The signal received at the base station is articulated as  
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e e e
e

p g s
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= +∑ y n  (3) 

where ep  denotes the transmission power of device e , es  represents the signal transmitted by 
user device e , which satisfy 2{|| || } 1= es . System noise is additive Gaussian white noise 
(AGWN), the noise vector denoted as n . 

Assuming the availability of complete CSI is available [14], the BS receives signals by 
maximum ratio combining (MRC) [19]. And the received matrix can be denoted by 

[ ], ,...,= 1 2 eW w w w , in which / || ||=e e ew h h . The SINR at the base station side experienced 
by IoT device e is shown as 
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where 2
eσ  denotes the noise power at IoT device e , 
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interference power of other IoT devices. The data transmission rate of  the  device is given by 
 ( )2log 1e er B γ= +  (5) 

where B is the bandwidth of the system. 
The achievable rate of the massive MIMO uplink system can be obtained by 

 ( )2
1

log 1
E

e
e

R B γ
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2.1 Antenna Selection 
In actual communication systems, there is a significant surge in user numbers in IoT system 
during peak periods, and a subsequent decrease during low-peak periods. This fluctuation in 
user counting is primarily due to the varying demands for data transmission at different period. 
To optimize system resources and provide meeting the user data transmission requirements, 
we select ( )s sK K K≤ antennas from the BS to participate in communication. 

sK  can be calculated by 
 sK Kε=     (7) 

where ⋅    denotes the ceiling function, ε  represents the coefficient in antenna selection 
processing. 

While an exhaustive method can yield the optimal antenna selection scheme, it is not 
feasible in massive MIMO networks equipped large volume of antennas. To conserve 
computing resources, this paper introduces a low complexity antenna selection strategy. 
Assume that the antennas at the BS operate independently from each other, and all IoT devices 
possess identical transmission power. 

The method is formulated as follows. First, the antenna selection coefficient ε is 
determined. Subsequently, we compute the cumulative user data transmission rates received 
by each antenna through Eq. (6). Then rank the results calculated by Eq. (6) in descending 
order. Based on the antenna selection coefficient, we select the top sK antennas with the 
highest reception rate and sK is obtained by Eq. (7). Notably, the antenna selection coefficient
ε  can be dynamically adjusted, which is in response to the change of user data transmission 
demands.  

2.2 Energy Efficiency 
The power consumption in massive MIMO networks primarily encompasses both circuit 
power consumption and transmission power when applied in practical scenarios. Given that 
the energy in wireless communication cannot be entirely received for the perspective of users, 
it is inevitable that the transmission efficiency will not achieve a 100% rate. Thus, the total 
consumed power PΣ  is given as 

 ,
1 1
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where kp  denotes the power consumed by each antenna, ,c ep  represents the circuit power 
consumption generated between IoT device e  and the BS, η  denotes transmission efficiency, 

ep  denotes transmission power when comes to IoT device e . 
The network energy efficiency (EE) can be quantified by calculating the ratio of the sum 

of the transmission rates to the total power consumption, which is shown by 
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where ˆeγ  represents the SINR of IoT device e  after antenna selection received at the BS. 
Considering the quality of service (QoS) for the massive MIMO system, the transmission 

power of IoT user device e  cannot exceed the maximum transmission power limit, which is 
shown by 

 max0 ep p< ≤  (10) 
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where maxp  represents the maximum transmission power, minr  denotes the average minimum 
achievable rate. According to Eq. (10) and (11), we define 1 2[ , ,..., ]Ep p p=p  as the set of 
satisfying power allocation results. 

In order to maximum the EE for massive MIMO system, it is imperative to dynamically 
adjust antenna selection and power allocation strategies in response to real-time IoT user 
device data transmission demands. The maximum EE problem is as follow 

 

2
1

,
1 1

max

2 min
1

ˆlog (1 )
max  

1

s. t.   0 1
0 ,  

1 ˆ log (1 )

E

e
e

E E

s k c e e
e e

e
E

e
e

B

K p p p

p p e

B r
E

γ
ϕ

η
ε

γ

=

= =

=

+
=

+ +

< ≤
< ≤ ∀

+ ≥

∑

∑ ∑

∑

 (12) 

3. Joint Antenna Selection and Power Allocation Method Based on 
Quantum Energy Valley Optimization Algorithm 

Intelligent optimization algorithms, characterized by their simplistic modeling, broad 
applicability, and robust optimization capabilities, have gained significant traction in wireless 
communication over recent years. However, the substantial gap between the definition domain 
intervals of problem variables which need to be addressed by the EE as equation (12) in 
massive MIMO systems, presents a challenge for many existing intelligent optimization 
algorithms. Consequently, this paper proposes a quantum energy valley optimization 
algorithm (QEVO) aimed to address issues within antenna selection and power allocation 
inherent in massive MIMO IoT networks. In this section, the principle of QEVO is given, 
followed by the discussion on its application in the schemes we proposed. 
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3.1 Quantum Energy Valley Optimization Algorithm (QEVO) 
In QEVO, denote the population of quantum particles by D , and the dimension of each 
quantum particle is M ( M is the dimension of considered optimization problem). The  tht  
iteration in the  thi  quantum particle is defined by  

 ,1 ,2 , ,[ , ,..., ,..., ]t t t t
i i i m i Mx x x x=t

ix  (13) 
where ,0 1t

i mx≤ ≤ , 1,2,...,i D= , 1,2,...,m M= . Then ,1 ,2 , ,[ , ,..., ,..., ]t t t t
i i i m i Mx x x x=t

ix  represents 
the position of the  thi  quantum particle in  tht iteration. Then through the mapping rule, t

ix
can be obtained by 

 ( )max min min
, ,
t t
i m m m i m mx x x x x= − +  (14) 

where max
mx  represents the upper and min

mx  denotes the lower bounds of the  thm variable.  
The fitness function is utilized to calculate the neutron enrichment level (NEL) of 

quantum particles. Then, t
iζ  represents the solution value of the  thi quantum particle in  tht  

iteration. For a maximization optimization problem, the global optimal quantum particle with 
the highest NEL is denoted as 1 2[ , ,..., ]t t t

Mb b b=tb  among the  tht iteration. tτ means the 
enrichment bound for quantum particles and the mathematical presentation is shown as 
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The stability level of the  thi  quantum particle in  tht iteration can be calculated as 

 max min max max min

max min
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,

t
t i
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ζ ζ ζ ζ ζ ζ
ϑ

ζ ζ
 − − ≠= 

=
 (16) 

where maxζ  and minζ  represent the best and worst values up to the  tht  iteration found of NEL, 
respectively. 

In the main search loop of QEVO, calculate the Euclidean distance between t
ix  and other 

quantum particles, which is shown as 

 ( )2

, , ,
1

M
t t t
i j i m j m

m
x xκ

=

= −∑  (17) 

where ,
t
i jκ  is the distance between the  thi and  thj quantum particle. Then, sort the quantum 

particles based on ascending distance, and κ  denotes an integer in the range of [2, ]D , the 
neighboring quantum particle 1 2[ , ,..., ]t t t

Mx x x=   

tx  in  tht iteration can be determined by the 
average of the first κ  nearest quantum particles. The center quantum particle in  tht iteration 
is been calculated by 

 ,
1

1ˆ
D

t t
m i m

i
x x

D =

= ∑  (18) 

where ˆ t
mx  denotes the  thm center quantum particle variable. 

There are three types within the decay process depend on different stability level of 
quantum particle. In the  tht iteration, compare the NEL of t

ix  with the enrichment bound. 
If  t t

iζ τ> , which means the quantum particle will update based on decay process. A 
random number ˆt

iϑ  is generated within [0,1] , which emulates the stability bound.  
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If ˆt t
i iϑ ϑ>  is met, it is assumed that the decay of alpha and gamma occurs. In this process, 

generate two random integers as tα  and tγ  in the range of [1, ]M . Then generates a vector  
ˆ tα  with the size of 1 tα×  and each variable is a random integer within [1, ]M . And vector ˆ tγ  

with 1 tγ× and each variable randomly produced within [1, ]M . The  thi  quantum particle 
undergoes two types of decay and two new quantum rotations are produced as follow 

 1
,

,

ˆ,
ˆ,

t t
m mt

l m t t
i m m

b m

x m
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+
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where 1
,
t
l mθ +  and 1

1,
t
l mθ +
+  denote the  thm quantum rotation angle of the  thi  quantum particle 

produced by alpha and gamma decay, 2 1l i= − , ˆ t
mα  and ˆt

mγ  represent the  thm  ˆ tα  and ˆ tγ  in 
case that ˆ t

mα  and ˆt
mγ  are available. 

If ˆt t
i iϑ ϑ≤ , bate decay is considered to happen. In this aspect, mathematically formulates 

as 
 1

, , 1 1 2 ˆ( )t t t t t
l m i i m m mx b xθ ζ ϖ β β+ = + −  (21) 

 ( )1 2
1, , 3 4

t t t t t
l m i m m mt

i

x b xϖθ τ β β
ζ

+
+ = + −   (22) 

where 1ϖ  and 2ϖ  are weight values, 1β  and 3β  are the random variable uniformly 
distributed within [0,1] , and similarly, 2β  and 4β  are the random variable uniformly 
distributed within [ 1,1]− , ˆ t

mx  denotes the  thm center quantum particle variable, and t
mx  is the 

 thm  neighboring quantum particle variable. 
If t t

iζ τ≤ , the quantum particle tends to undergo position emission. In this regard, the 
new quantum rotation is produced as 

 1
, 3 , 1 ˆ( ) ( )t t t t t t

l m i m m i m mx b x xθ ϖ ζ ρ+ = − + −   (23) 
where 3ϖ  is weight value, 1ρ  is the random variable uniformly distributed within [ 1,1]− .  

After that, new candidate quantum particles obey the following updating process based 
on quantum rotation as 

 1 1 2 1
, , , , ,cos( ) 1 ( ) sin( )t t t t t

l m i m l m i m l mx xχ θ θ+ + += + −  (24) 

 1 1 2 1
1, , 1, , 1,cos( ) 1 ( ) sin( )t t t t t

l m i m l m i m l mx xχ θ θ+ + +
+ + += + −  (25) 

where 1
,

t
l mχ +  and 1

1,
t
l mχ +
+  represent new candidate quantum particles. For the quantum particle 

with higher NEL in which t t
iζ τ> , there are two newly generated candidate quantum particles. 

For the quantum particle in which t t
iζ τ≤ , only 1

,
t
l mχ +  is generated.  

Upon completion of the main loop within QEVO, the newly proposed quantum particles 
are incorporated into the existing population. The top D  prominent particles are selected to 
form the new population for subsequent search iterations. 
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3.2 Process of QEVO-based Antenna Selection and Power Allocation 
In this subsection, consider the implementation details of joint intelligent antenna selection 
and power allocation based on QEVO. As we have outlined in Section 2, our objective is to 
find the optimal antenna selection in BS and user transmit power for massive MIMO within 
IoT systems, with the ultimate goal of maximizing EE. 

Hence, for the proposed QEVO, to ensure the diversity of quantum particles population, 
the initial variable for each quantum particle is randomly generated within a quantum interval 
[0,1] . The fitness function of  tht  iteration in the  thi  quantum particle is defined as follows 

 
( ), satisfy the constrains in (12)

( )
0, else

f
ϕ= 


t
t i
i

x
x  (26) 

where the position of quantum particle t
ix  represents a set of parameters to be optimized,

,1 ,2 , ,[ , ,..., ,..., , ]t t t t t
i i i e i E ip p p p ε=t

ix , where ,1 ,2 ,[ , ,..., ]t t t
i i i Ep p p=t

ip  denotes a power allocation 
scheme, t

iε  represents an antenna number choice for massive MIMO systems. The procedural 
steps involved in implementing the QEVO-based antenna selection and power allocation are 
succinctly summarized below. 

Step 1: Establish the joint intelligent antenna selection and power allocation model 
discussed in Section 2, derive the energy efficiency equation, and identify variables for 
optimization. 

Step 2: Randomly initialize the quantum particle and establish the parameter settings. 
Step 3: Map the quantum particle t

ix  to its positions t
ix , calculate the NEL t

iζ  of each 
quantum particle based on equation (26), and mark the quantum particle with the best NEL as 
the global optimal quantum particle tb . Obtain the center quantum particle ˆ tx  and the 
neighboring quantum particle  tx .  

Step 4: According to different decay processes quantum particles depended on stability 
level, perform the evolution process.  

Step 5: Calculate the NEL, refresh the quantum particle population and the global 
optimal quantum particle. 

Step 6: If the current iteration number is less than the maximum iteration count, proceed 
Step 4; otherwise, terminate whole iteration process, output the global optimal quantum 
particle. By applying mapping rules, determine the most effective antenna selection and power 
allocation strategy has been found for massive MIMO in IoT networks. 

4. Simulation Results 
In this section, considering different communication scenarios in IoT with massive MIMO 
systems, the simulation results are given to examine the efficacy of QEVO-based antenna 
selection and power allocation method. 

4.1 Performance Comparison of QEVO 
Consider a single-cell massive MIMO system comprising E IoT users, with a system 
bandwidth of B . In the simulation, it is that the BS is situated at (0,0) m, has a coverage radius 
of 500 m, and the users are randomly distributed within this coverage. The communication 
network channel transmission model is based on [19]. Assume that all users possess identical 
maximum transmission power and circuit power consumption. Furthermore, all system noises 
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are Gaussian white noise with power spectral density 0N . The specific parameters of massive 
MIMO systems are detailed in Table 1. 
 

Table 1. Parameter settings for massive MIMO in IoT system. 

Symbol Parameter Value 
K  Antenna number 128 
E  Number of IoT user device  5 

0r  Radius of the BS 100 m 

0v  Path loss exponent 3.8 
η  Transmission efficiency 50% 

kp  Power consumption at antenna 0 

,c ep  Circuit power of IoT device e  10 dBm 

maxp  Maximum transmission power 30 dBm 

B  System bandwidth 1 MHz 
minr  Minimum achievable rate 1 Mbit / s 

0N  Noise power spectral density -174 dBm / Hz 
 
 
This study examines the performance of joint antenna selection and power allocation 

strategies for EE maximization. The strategies under consideration include QEVO, energy 
valley optimization (EVO), whale optimization algorithm (WOA), particle swarm 
optimization (PSO), Dinkelbach algorithm [24], and half-power allocation (HPA) [29] scheme. 
For the proposed QEVO, we set 1 0.4ϖ = , 2 0.15ϖ = , 3 0.65ϖ = . For comparison purposes, 
the population size 20D =  and the dimension of considered problem M are the same within 
QEVO, EVO, WOA and PSO. The parameters for EVO, WOA, and PSO can be found in [27], 
[26], and [25], respectively. All results are the average of 100 simulations. 

The energy efficiency of the system plotted against iteration count is depicted in Fig. 2. 
The results indicate that the proposed QEVO outperforms other algorithms such as the EVO, 
PSO, WOA, and Dinkelbach algorithm. Specifically, WOA and PSO exhibit slow 
convergence rates, EVO demonstrates rapid convergence but lacks robust optimization 
capabilities, while the Dinkelbach algorithm tends towards local convergence. This superior 
performance can be attributed to the QEVO ability to effectively integrate the benefits of both 
energy valley optimizer and quantum computing. The diverse range of quantum evolution 
strategies employed by QEVO significantly improves convergence speed. Furthermore, the 
evolution equation of quantum coding remains insensitive to the changes in each dimensional 
definition interval. Consequently, the QEVO algorithm overcomes the limitations of 
traditional intelligent optimization algorithms and the Dinkelbach propensity for local 
optimum solutions. It successfully identifies an antenna selection and power allocation scheme 
that maximizes system EE in massive MIMO systems while satisfying transmission 
requirements of IoT devices. 
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Fig. 2. Convergence curves of 6 algorithms with system EE  

 
Fig. 3 shows the simulation results demonstrated the maximum transmission power of 

users within 20 to 40 dBm. As the user number increases, the EE of both QEVO and WOA 
tends towards stability. Notably, QEVO exhibits superior performance when the IoT user 
transmission power is substantial. The optimization capability of the EVO fluctuates with 
changes in user transmission power. Furthermore, the system EE of PSO, Dinkelbach, and 
HPA methods diminishes as the maximum transmission power of users escalates. The 
simulation results underscore the robust global optimization ability of the QEVO. The iteration 
number of each algorithm are 500 times, and setup with the same number at the following 
simulation form Figs. 4 to 7.  

 

 
Fig. 3. System EE comparison of 6 algorithms with maximum IoT user transmission power 
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The curve of system EE comparison of 6 algorithms with IoT device illustrated in Fig. 4. 

Results indicate that as the number of IoT devices increases, systems EE for massive MIMO 
diminishes. This decline can be attributed to co-channel interference between users, which 
escalates with an increase in user count. Additionally, the SNR from the BS to users diminishes, 
leading to a reduction in user transmission rates. Concurrently, system energy consumption 
rises with increasing numbers. Under identical conditions, QEVO achieves optimal system EE. 
The number of BS antennas and IoT user devices are assumed to remain constant.   

 

 
Fig. 4. System EE comparison of 6 algorithms with IoT device number 

 

 

4.2 Impact of Different Parameters 
In the subsequent subsection, we explore the influence of various system parameters on the 
efficacy of our proposed joint antenna selection and power allocation scheme.  

Fig. 5 shows the curve of EE versus different antenna selection coefficient ε  and IoT 
device number E , which considers that increases from 0.1 to 1, while the number of IoT users 
is set at 3, 5, 7, 9, and 11 respectively. The data suggests that when ε  remains constant, there 
is a direct correlation between EE and the increase in user number. In other words, as user 
number remains constant, a lower ε corresponds to higher EE. Consequently, for smaller user 
populations, judiciously reducing antenna number involved in BS communication can 
significantly decrease system energy consumption and improve EE. However, as the IoT 
device number escalates, adding more antennas to the communication has minimal impact on 
EE. As the IoT device number escalates, adding more antennas to the communication has 
minimal impact on EE. 
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Fig. 5. System EE comparison with different antenna selection coefficient and IoT device number 

 
Fig. 6 shows curves of EE with the variation of different antenna number, where the 

antenna number K  increases from 50 to 500 in the simulation experiment. In Fig. 6, antenna 
selection coefficient ε  takes values from 0.1 to 0.9 with an interval of 0.2, respectively. As 
can be inferred, both antenna selection coefficient and antenna number exert a significant 
influence on EE. It is mostly attributed to the fact that with a fixed antenna selection coefficient, 
an extensive increase in antenna number equipped in the base station invariably elevates the 
system power consumption. Conversely, when antenna number is held constant, selecting 
fewer antennas can effectively reduce the power consumption among whole communication 
system. However, within the context of practical communication systems, it is imperative to 
consider user data transmission demands. Unilaterally reducing the number of antennas 
utilized in communication to enhance EE is not feasible. To ensure system reliability, the joint 
antenna selection and power allocation method we proposed can modify the antenna selection 
coefficient and transmission power of IoT user device in response to changes antenna number.  

 

 
Fig. 6. System EE comparison of two antenna selection methods with different antenna number and 

antenna selection coefficient 
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Fig. 7 illustrates the system EE comparison of 6 algorithms with different antenna number. 
As the simulation results shows in Fig. 7, the intelligence algorithms significantly outperform 
Dinkelbach and HPA in scenarios involving a large number of antennas. Compare to WOA, 
EVO and PSO, the novel intelligent algorithm QEVO proposed this paper can achieve 
maximum EE when fixed the antenna selection coefficient 0.1ε =  of the BS. 

 

 
Fig. 7. System EE comparison of 6 algorithms with different antenna number ( 0.1ε = ) 

 
As illustrated in Figs. 2 to 7, it is evident that QEVO consistently outperforms other 

methods across all tested conditions. Given a fixed maximum user transmission power, due to 
the superior EE of the QEVO-based joint antenna selection and power allocation method, it 
requires less transmission time to complete identical data transmission tasks. When compared 
to other strategies, the method proposed achieves maximum EE and can be applied to practical 
IoT networks design. 

5. Conclusion 
This paper introduces an advanced method achieved joint intelligent antenna selection and 
power allocation for massive MIMO in IoT networks. This approach takes into account the 
varying transmission demands of users across different time slots in practical communication 
systems. It derives a maximum EE equation specific to massive MIMO systems and employs 
a QEVO to address this complex, nonlinear, multi-constraint optimization problem associated 
with antenna selection and power allocation. The proposed QEVO integrates the benefits of 
quantum computing with the principles of energy valley optimization. Simulation results 
demonstrate that method we proposed, grounded on QEVO, is not only capable of meeting the 
real-time data transmission requirements of users but also significantly enhances EE. In 
various simulation scenarios, the proposed method outperforms existing algorithms and 
alternative intelligent algorithms technique. The algorithm introduced in this study can extend 
to intricate engineering problems. In subsequent research, we aim to incorporate additional 
performance metrics and practical constraints in intelligent extreme massive MIMO systems. 
Alternatively, multi-objective optimization algorithms can yield a more balanced outcome 
particularly within the intricate communication scenarios of a sea-air-ground network. 
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