DOI QR코드

DOI QR Code

Exploring Levansucrase Operon Regulating Levan-Type Fructooligosaccharides (L-FOSs) Production in Priestia koreensis HL12

  • Hataikarn Lekakarn (Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus) ;
  • Daran Prongjit (Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus) ;
  • Wuttichai Mhuantong (Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Srisakul Trakarnpaiboon (Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology) ;
  • Benjarat Bunterngsook (Enzyme Technology Research Team, Biorefinery Technology and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology)
  • 투고 : 2024.04.25
  • 심사 : 2024.08.13
  • 발행 : 2024.10.28

초록

Levan biopolymer and levan-type fructooligosaccharides (L-FOSs) are β-2,6-linked fructans that have been used as non-digestible dietary fiber and prebiotic oligosaccharides in food and cosmeceutical applications. In this study, we explore the operon responsible for levan and L-FOSs production in Priestia koreensis HL12. Presented is the first genomic perspective on sucrose utilization and the levan biosynthesis pathway in this bacterium. Regarding sequence annotation, the putative levansucrase operon responsible for β-2,6-linked fructan was identified in the genome of strain HL12, and comprises sacB levansucrase gene belonging to GH68, located adjacent to levB endo-levanase gene, which belongs to GH32. Importantly, sugars related with the levan biosynthesis pathway are proposed to be transported via 3 types of transportation systems, including multiple ABCSugar and glucose/H+ transporters, as well as glucose- and fructose-specific PTS systems. Based on product profile analysis, the HL12 strain exhibited high efficiency in levan production from high sucrose concentration (300 g/l), achieving the highest yield of 127 g/l (equivalent to 55% conversion based on sucrose consumption), together with short-chain L-FOSs (DP3-5) and long-chain L-FOSs with respective size larger than DP6 after 48 h incubation. These findings highlight the potential of P. koreensis HL12 as a whole-cell biocatalyst for producing levan and L-FOSs, and underscore its novelty in converting sugars into high-value-added products for diverse commercial and industrial applications.

키워드

과제정보

The authors gratefully acknowledge the financial support provided by Faculty of Science and Technology, Contract No. SciGR 4/2566. The authors also acknowledge the support provided by the Enzyme Technology Research Team, National Center for Genetic Engineering and Biotechnology and Department of Biotechnology, and Faculty of Science and Technology, Thammasat University.

참고문헌

  1. Domzal-Kedzia M, Ostrowska M, Lewinska A, Lukaszewicz M. 2023. Recent developments and applications of microbial levan, a versatile polysaccharide-based biopolymer. Molecules 28: 5407.
  2. Hamada MA, Hassan RA, Abdou AM, Elsaba YM, Aloufi AS, Sonbol H, et al. 2022. Bio_fabricated levan polymer from Bacillus subtilis MZ292983.1 with antibacterial, antibiofilm, and burn healing properties. Appl. Sci. 12: 6413.
  3. Cheng R, Cheng L, Zhao Y, Wang L, Wang S, Zhang J. 2021. Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate. Appl. Microbiol. Biotechnol. 105: 769-787.
  4. Bruni GO, Qi Y, Terrell E, Dupre RA, Mattison CP. 2024. Characterization of levan fructan produced by a Gluconobacter japonicus strain isolated from a sugarcane processing facility. Microorganisms 12: 107.
  5. Cai G, Wu D, Li X, Lu J. 2020. Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101. Int. J. Biol. Macromol. 146: 482-487.
  6. Erdal Altintas O, Toksoy Oner E, Cabuk A, Aytar Celik P. 2022. Biosynthesis of levan by Halomonas elongata 153B: optimization for enhanced production and potential biological activities for pharmaceutical field. J. Polym. Environ. 31: 1440-1455.
  7. Gojgic-Cvijovic GD, Jakovljevic DM, Loncarevic BD, Todorovic NM, Pergal MV, Ciric J, et al. 2019. Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. Int. J. Biol. Macromol. 121: 142-151.
  8. Hovels M, Kosciow K, Kniewel J, Jakob F, Deppenmeier U. 2020. High yield production of levan-type fructans by Gluconobacter japonicus LMG 1417. Int. J. Biol. Macromol.164: 295-303.
  9. Jadaun JS, Narnoliya LK, Agarwal N, Singh SP. 2019. Catalytic biosynthesis of levan and short-chain fructooligosaccharides from sucrose-containing feedstocks by employing the levansucrase from Leuconostoc mesenteroides MTCC10508. Int. J. Biol. Macromol. 127: 486-495.
  10. Kim KH, Chung CB, Kim YH, Kim KS, Han CS, Kim CH. 2005. Cosmeceutical properties of levan produced by Zymomonas mobilis. J. Cosmet. Sci. 56: 395-406.
  11. Ni D, Xu W, Bai Y, Zhang W, Zhang T, Mu W. 2018. Biosynthesis of levan from sucrose using a thermostable levansucrase from Lactobacillus reuteri LTH5448. Int. J. Biol. Macromol. 113: 29-37.
  12. Ragab TIM, Malek RA, Elsehemy IA, Farag MMS, Salama BM, Abd El-Baseer MA, et al. 2019. Scaling up of levan yield in Bacillus subtilis M and cytotoxicity study on levan and its derivatives. J. Biosci. Bioeng. 127: 655-662.
  13. Wang S, Wu B, Todhanakasem T. 2024. Expanding the horizons of levan: from microbial biosynthesis to applications and advanced detection methods. World J. Microbiol. Biotechnol. 40: 214.
  14. Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W. 2019. Recent advances in levansucrase and inulosucrase: evolution, characteristics, and application. Crit. Rev. Food Sci. Nutr. 59: 3630-3647.
  15. Tezgel N, Kirtel O, Van den Ende W, Toksoy Oner E. 2020. Fructosyltransferase enzymes for microbial fructan production, pp. 1-39. In Arora NK, Mishra J, Mishra V (eds.), Microbial Enzymes: Roles and Applications in Industries, Ed. Springer Singapore, Singapore.
  16. Xu W, Zhang X, Ni D, Zhang W, Guang C, Mu W. 2024. A review of fructosyl-transferases from catalytic characteristics and structural features to reaction mechanisms and product specificity. Food Chem. 440: 138250.
  17. Zhang W, Xu W, Ni D, Dai Q, Guang C, Zhang T, et al. 2019. An overview of levan-degrading enzyme from microbes. Appl. Microbiol. Biotechnol. 103: 7891-7902.
  18. Vu THN, Quach NT, Xuan D, Le H, Chi L, Lam N, et al. 2021. A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides. PeerJ. 9: e11839.
  19. Jeckelmann JM, Erni B. 2019. Carbohydrate transport by group translocation: the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Subcell. Biochem. 92: 223-274.
  20. Jeckelmann JM, Erni B. 2020. Transporters of glucose and other carbohydrates in bacteria. Pflugers Arch. 472: 1129-1153.
  21. Ruan H, Yu H, Xu J. 2020. The glucose uptake systems in Corynebacterium glutamicum: a review. World J. Microbiol. Biotechnol. 36: 126.
  22. Erni B. 2013. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. J. Iran Chem. Soc. 10: 593-630.
  23. Deutscher J, Francke C, Postma PW. 2006. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70: 939-1031.
  24. Lindner SN, Seibold GM, Henrich A, Kramer R, Wendisch VF. 2011. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl. Environ. Microbiol. 77: 3571-3581.
  25. Lekakarn H, Bunterngsook B, Pajongpakdeekul N, Prongjit D, Champreda V. 2022. A novel low temperature active maltooligosaccharides-forming amylase from Bacillus koreensis HL12 as biocatalyst for maltooligosaccharide production. 3 Biotech. 12: 134.
  26. Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38: 3022-3027.
  27. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  28. Sanderson MJ. 1989. Confidence limits on phylogenies: the bootstrap revisited. Cladistics. 5: 113-129.
  29. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.
  30. Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884-i890.
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477.
  32. Manni M, Berkeley MR, Seppey M, Zdobnov EM. 2021. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1: e323.
  33. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055.
  34. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9: 75.
  35. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. 2018. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46: W95-w101.
  36. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. 2015. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32: 929-931.
  37. Toronen P, Medlar A, Holm L. 2018. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 46: W84-w88.
  38. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. 2018. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: D309-D314.
  39. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2014. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226.
  40. Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. 2022. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40: 1023-1025.
  41. Reese MG. 2001. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem. 26: 51-56
  42. Gupta RS, Patel S, Saini N, Chen S. 2020. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 70: 5753-5798.
  43. Wang J, Xu X, Zhao F, Yin N, Zhou Z, Han Y. 2022. Biosynthesis and structural characterization of levan by a recombinant levansucrase from Bacillus subtilis ZW019. Waste Biomass Valori. 13: 4599-4609.
  44. Wu C, Zhang T, Mu W, Miao M, Jiang B. 2015. Biosynthesis of lactosylfructoside by an intracellular levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Res. 401: 122-126.
  45. Kang HK, Seo MY, Seo ES, Kim D, Chung SY, Kimura A, et al. 2005. Cloning and expression of levansucrase from Leuconostoc mesenteroides B-512 FMC in Escherichia coli. Biochim. Biophys. Acta. 1727: 5-15.
  46. Polsinelli I, Caliandro R, Salomone-Stagni M, Demitri N, Rejzek M, Field RA, et al. 2019. Comparison of the levansucrase from the epiphyte Erwinia tasmaniensis vs its homologue from the phytopathogen Erwinia amylovora. Int. J. Biol. Macromol. 127: 496-501.
  47. Khandekar S, Srivastava A, Pletzer D, Stahl A, Ullrich MS. 2014. The conserved upstream region of lscB/C determines expression of different levansucrase genes in plant pathogen Pseudomonas syringae. BMC Microbiol. 14: 79.
  48. Martinez-Fleites C, Ortiz-Lombardia M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, et al. 2005. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem. J. 390: 19-27.
  49. Gao S, Qi X, Hart DJ, Gao H, An Y. 2017. Expression and characterization of levansucrase from Clostridium acetobutylicum. J. Agric. Food Chem. 65: 867-871.
  50. Shaheen S, Aman A, Qader SA, Siddiqui NN. 2017. Hyper-production of levansucrase from Zymomonas mobilis KIBGEIB14 using submerged fermentation technique. Pak. J. Pharm. Sci. 30: 2053-2059.
  51. Kirtel O, Menendez C, Versluys M, Van den Ende W, Hernandez L, Toksoy Oner E. 2018. Levansucrase from Halomonas smyrnensis AAD6(T): first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Appl. Microbiol. Biotechnol. 102: 9207-9220.
  52. Pereira Y, Petit-Glatron MF, Chambert R. 2001. yveB, Encoding endolevanase LevB, is part of the sacB-yveB-yveA levansucrase tricistronic operon in Bacillus subtilis. Microbiology (Reading) 147: 3413-3419.
  53. Lekakarn H, Bunterngsook B, Jaikaew P, Kuantum T, Wansuksri R, Champreda V. 2022. Functional characterization of recombinant endo-levanase (LevBk) from Bacillus koreensis HL12 on short-chain levan-type fructooligosaccharides production. Protein J. 41: 477-488.
  54. Domzal-Kedzia M, Ostrowska M, Lewinska A, Lukaszewicz M. 2023. Recent developments and applications of microbial levan, a versatile polysaccharide-based biopolymer. Molecules 28: 5407.
  55. Daguer J-P, Geissmann T, Petit-Glatron M-F, Chambert R. 2004. Autogenous modulation of the Bacillus subtilis sacB-levB-yveA levansucrase operon by the levB transcript. Microbiology 150: 3669-3679.
  56. Liyaskina EV, Rakova NA, Kitykina AA, Rusyaeva VV, Toukach PV, Fomenkov A, et al. 2021. Production and сharacterization of the exopolysaccharide from strain Paenibacillus polymyxa 2020. PLoS One 16: e0253482.
  57. Vu NT, Quach TN, Dao XT, Le HT, Le CP, Nguyen LT, et al. 2021. A genomic perspective on the potential of termite-associated Cellulosimicrobium cellulans MP1 as producer of plant biomass-acting enzymes and exopolysaccharides. PeerJ. 9: e11839.
  58. Senthilkumar V, Rajendhran J, Busby SJ, Gunasekaran P. 2009. Characterization of multiple promoters and transcript stability in the sacB-sacC gene cluster in Zymomonas mobilis. Arch. Microbiol. 191: 529-541.
  59. Tian T, Sun B, Shi H, Gao T, He Y, Li Y, et al. 2021. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J. 15: 2723-2737.
  60. Senthilkumar V, Rameshkumar N, Busby SJ, Gunasekaran P. 2004. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production. J. Appl. Microbiol. 96: 671-676.
  61. Steinmetz M, Le Coq D, Aymerich S, Gonzy-Treboul G, Gay P. 1985. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites. Mol. Genet. Genomics 200: 220-228.
  62. Waldherr FW, Meissner D, Vogel RF. 2008. Genetic and functional characterization of Lactobacillus panis levansucrase. Arch. Microbiol. 190: 497-505
  63. Rathsam C, Jacques NA. 1998. Role of C-terminal domains in surface attachment of the fructosyltransferase of Streptococcus salivarius ATCC 25975. J. Bacteriol. 180: 6400-6403.
  64. Borchert TV, Nagarajan V. 1990. Structure-function studies on the Bacillus amyloliquefaciens levansucrase signal peptide, pp. 171-177. In Zukowski MM, Ganesan AT, Hoch JA (eds.), Genetics and Biotechnology of Bacilli, Ed. Academic Press. pp.171-177.
  65. Jakob F, Meissner DA, Vogel RF. 2012. Comparison of novel GH 68 levansucrases of levan-overproducing Gluconobacter species. Acetic Acid Bacteria 1: 2.
  66. Li H, Ullrich MS. 2001. Characterization and mutational analysis of three allelic lsc genes encoding levansucrase in Pseudomonas syringae. J. Bacteriol. 183: 3282-3292.
  67. Song K-B, Joo H-K, Rhee S-K. 1993. Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988). Biochim. Biophys. Acta. 1173: 320-324.
  68. Borchert TV, Nagarajan V. 1991. Effect of signal sequence alterations on export of levansucrase in Bacillus subtilis. J. Bacteriol. 173: 276-282.
  69. Gu Y, Zheng J, Feng J, Cao M, Gao W, Quan Y, et al. 2017. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements. Appl. Microbiol. Biotechnol. 101: 4163-4174.
  70. Zeng L, Burne RA. 2016. Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl. Environ. Microbiol. 82: 146-156.
  71. Chandravanshi M, Sharma A, Dasgupta P, Mandal SK, Kanaujia SP. 2019. Identification and characterization of ABC transporters for carbohydrate uptake in Thermus thermophilus HB8. Gene 696: 135-148.
  72. Carreon-Rodriguez OE, Gosset G, Escalante A, Bolivar F. 2023. Glucose transport in Escherichia coli: from basics to transport engineering. Microorganisms 11: 1588.
  73. Gaigalat L, Schluter J-P, Hartmann M, Mormann S, Tauch A, Puhler A, et al. 2007. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol. Biol. 8: 104.
  74. Castro R, Neves AR, Fonseca LL, Pool WA, Kok J, Kuipers OP, et al. 2009. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease. Mol. Microbiol. 71: 795-806.
  75. Sundar GS, Islam E, Braza RD, Silver AB, Le Breton Y, McIver KS. 2018. Route of glucose uptake in the group a Streptococcus impacts SLS-mediated hemolysis and survival in human blood. Front. Cell. Infect. Microbiol. 8: 71.
  76. Fiegler H, Bassias J, Jankovic I, Bruckner R. 1999. Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J. Bacteriol. 181: 4929-4936.
  77. Ates O, Arga KY, Oner ET. 2013. The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T.). Biotechnol. Prog. 29: 1386-1397.
  78. Mendez-Lorenzo L, Porras-Dominguez JR, Raga-Carbajal E, Olvera C, Rodriguez-Alegria ME, Carrillo-Nava E, et al. 2015. Intrinsic levanase activity of Bacillus subtilis 168 levansucrase (SacB). PLoS One 10: e0143394.
  79. Oner ET, Hernandez L, Combie J. 2016. Review of levan polysaccharide: from a century of past experiences to future prospects. Biotechnol. Adv. 34: 827-844.
  80. Dos Santos L, Melo F, Martins Paiva W, Borsato D, Silva M, Celligoi MA. 2013. Characterization and optimization of levan production by Bacillus subtilis NATTO. Rom. Biotechnol. Lett. 18: 8413-8422.
  81. Zhang T, Li R, Qian H, Mu W, Miao M, Jiang B. 2014. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polym. 101: 975-981.
  82. Lorenzetti MFS., Moro MR, Garcia-Cruz CH. 2015. Alginate/PVA beads for levan production by Zymomonas mobilis. J. Food Process Eng. 38: 31-36.