DOI QR코드

DOI QR Code

A New Edible Wild Mushroom Species, Panus sribuabanensis (Panaceae, Polyporales) from Northern Thailand and Its Nutritional Composition, Total Phenolic Content, and Antioxidant Activity

  • Jaturong Kumla (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University) ;
  • Kritsana Jatuwong (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University) ;
  • Keerati Tanruean (Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University) ;
  • Surapong Khuna (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University) ;
  • Sirasit Srinuanpan (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University) ;
  • Saisamorn Lumyong (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University) ;
  • Nakarin Suwannarach (Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University)
  • Received : 2023.09.18
  • Accepted : 2023.12.12
  • Published : 2024.01.31

Abstract

A new edible wild mushroom species, described herein as Panus sribuabanensis, was collected from local markets and natural forests located in northern Thailand. This species is characterized by its medium to large-sized basidiomata, broadly ellipsoid to ellipsoid-shaped basidiospores, dimitic hyphal system, and the absence of hyphal pegs. A molecular phylogenetic analysis of combined the internal transcribed spacer (ITS) and large subunit (nrLSU) of nuclear ribosomal DNA sequences supported the monophyly of P. sribuabanensis as a distinct lineage within the genus Panus. Full description, illustrations, color photographs, and a phylogenetic tree to show the placement of P. sribuabanensis are provided. The dried mushroom showed a nutritional composition within the range of 2.58%-2.67% for fat content, 27.10%-27.98% for protein, and 43.97%-44.10% for carbohydrates. The ethanolic extracts from this mushroom exhibited a total phenolic content ranging from 0.66 to 0.74 mg GAE/g dry weight (dw). Moreover, the antioxidant activities of ethanolic extracts evaluated by the 2,2-diphenyl-1-picrylhydrazyl (0.90-1.08 mg TE/g dw) and ferric reducing antioxidant power (0.93-1.08 mg TE/g dw) assays demonstrate higher activity compared to the 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay (0.44-0.51 mg TE/g dw). The outcomes of this study provide significant information on the nutritional value, phenolic content, and antioxidant activity potential of this new mushroom species discovered in northern Thailand.

Keywords

Acknowledgement

The authors are grateful to Mr. Russell Kirk Hollis for kind help in the English correction.

References

  1. Li H, Tian Y, Menolli N, et al. Reviewing the world's edible mushroom species: a new evidence-based classification system. Compr Rev Food Sci Food Saf. 2021;20(2):1982-2014. doi: 10.1111/1541-4337.12708.
  2. Ho LH, Zulkifli NA, Tan TC. Edible mushroom: nutritional properties, potential nutraceutical values, and its utilisation in food product development. In: Passari AK, Sanchez S, editros. An introduction to mushroom. London (UK): IntechOpen; 2020. p. 1-19.
  3. Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: a review. Pharma Nutrition. 2017;5(2):35-46. doi: 10.1016/j.phanu.2017.02.001.
  4. Tian R, Chai H, Qiu J-Q, et al. Preparation, structural characterisation, and antioxidant activities of polysaccharides from eight boletes (Boletales) in tropical China. Mycology. 2022;13(3):195-206. doi: 10.1080/21501203.2022.2069172.
  5. Valverde ME, Hernandez-Perez T, Paredes-Lopez O. Edible mushrooms: improving human health and promoting quality life. Int J Microbiol. 2015;2015:376314-376387. doi: 10.1155/2015/376387.
  6. Kumar K, Mehra R, Guine RPF, et al. Edible mushrooms: a comprehensive review on bioactive compounds with health benefits and processing aspects. Foods. 2021;10(12):2996. doi: 10.3390/foods10122996.
  7. Reena RD, Kandagalla S, Krishnappa M. Exploring the ethnomycological potential of Lentinus squarrosulus mont. through GC-MS and chemoinformatics tools. Mycology. 2020;11(1):78-89. doi: 10.1080/21501203.2019.1707724.
  8. Krishnakumar NM, Ceasar SA. Wild edible and medicinal mushrooms used by the tribes in the state of Kerala, India: a review. Int J Med Mushrooms. 2022;24(9):63-72. doi: 10.1615/IntJMedMushrooms.2022044605.
  9. Atri NS, Mridu C. Mushrooms-some ethnomycological and sociobiological aspects. Kavaka. 2018;51:11-19.
  10. Ruksawong P, Flegel TW. Thai mushrooms and other fungi. Bangkok (Thailand): National Science and Technology Development Agency; 2001.
  11. Kumla J, Suwannarach N, Liu YS, et al. Survey of edible Amanita in Northern Thailand and their nutritional value, total phenolic content, antioxidant and α-glucosidase inhibitory activities. JoF. 2023;9(3):343. doi: 10.3390/jof9030343.
  12. Sanmee R, Dell B, Lumyong P, et al. Nutritive value of popular wild edible mushroom from northen Thailand. Food Chem. 2003;82(4):527-532. doi: 10.1016/S0308-8146(02)00595-2.
  13. Watling R. Foray in Thailand. Fungi. 2013;6:45-46.
  14. Hyde KD, Norphanphoun C, Chen J, et al. Thailand's amazing diversity-up to 96% of fungi in Northern Thailand are novel. Fungal Divers. 2018;93(1):215-239. doi: 10.1007/s13225-018-0415-7.
  15. Suwannarach N, Kumla J, Khuna S, et al. History of Thai mycology and resolution of taxonomy for Thai macrofungi confused with Europe and American names. CMJS. 2022;49(3):654-683. doi: 10.12982/CMJS.2022.052.
  16. Fries EM. Epicrisis systematis mycologici. Uppsala (Sweden): Typographia Academica; 1838.
  17. Seelan JSS, Justo A, Nagy LG, et al. Phylogenetic relationships and morphological evolution in Lentinus, Polyporellus and Neofavolus, emphasizing southeastern Asian taxa. Mycologia. 2015;107(3):460-474. doi: 10.3852/14-084.
  18. Kirk PM, Cannon P, Stalpers J. Dictionary of the fungi. 10th ed. Wallingford (UK): CABI; 2008.
  19. Senthilarasu G. The lentinoid fungi (Lentinus and Panus) from Western Ghats, India. IMA Fungus. 2015;6(1):119-128. doi: 10.5598/imafungus.2015.06.01.06.
  20. Singer R. The agaricales in modern taxonomy. 4th ed. Koenigstein (Germany): Koeltz Scientific Books; 1986.
  21. Corner EJH. The agaric genera Lentinus, Panus and Pleurotus. Beiheftezur Nova Hedwigia. 1981;69:1-169.
  22. Pegler DN. The genus Lentinus: a world monograph. Kew Bull Add Ser. 1983;10:1-281.
  23. Moser M, Kibby G. Keys to agarics and boleti: Polyporales, Boletales, Agaricales, Russulales. London (UK): Roger Phillips; 1978.
  24. Justo A, Miettinen O, Floudas D, et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017;121(9):798-824. doi: 10.1016/j.funbio.2017.05.010.
  25. Vinjusha N, Kumar TK. Two new combinations in the genus Panus (Panaceae, Polyporales) based on morphology and molecular phylogeny. Phytotaxa. 2021;514(3):287-294. doi: 10.11646/phytotaxa.514.3.8.
  26. Liu S, Zhou JL, Song J, et al. Climacocystaceae fam. nov. and Gloeoporellaceae fam. nov., two new families of Polyporales (Basidiomycota). Front Microbiol. 2023;14:1115761. doi: 10.3389/fmicb.2023.1115761.
  27. Wijayawardene NN, Hyde KD, Dai DQ, et al. Outline of fungi and fungus-like taxa - 2021. Mycosphere. 2022;13(1):53-453. doi: 10.5943/mycosphere/13/1/2.
  28. Vargas-Isla R, Capelari M, MenolliJrN, et al. Relationship between Panus lecomtei and P. strigellus inferred from their morphological, molecular and biological characteristics. Mycoscience. 2015;56(6):561-571. doi: 10.1016/j.myc.2015.05.004.
  29. Sharma VP, Barh A, Kumari B, et al. Nutritional and biochemical characterization of Panus lecomtei mushroom (Agaricomycetes) from India and its cultivation. Int J Med Mushrooms. 2020;22(5):501-507. doi: 10.1615/IntJMedMushrooms.2020034728.
  30. Vasco-Palacios AM, Suaza SC, Castano-Betancur M, et al. Conocimento etnoecologico de los hongos entre los indigenas uitoto, muiname y andoke de la amazonia colombiana. Acta Amaz. 2008;38(1):17-30. doi: 10.1590/S0044-59672008000100004.
  31. Chandrasrikul A, Suwanarit P, Sangwanit U, et al. Mushroom (Basidiomycetes) in Thailand. Bangkok (Thailand): Office of Natural Resources and Environmental Policy and Planning; 2011.
  32. Karunarathna SC, Yang ZL, Zhao RL, et al. Three new species of Lentinus from Northern Thailand. Mycol Progress. 2011;10(4):389-398. doi: 10.1007/s11557-010-0701-6.
  33. Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Methuen; 1978.
  34. Largent DL, Johnson D, Watling R. How to identify mushrooms to genus. III. Microscopic features. California (USA): Eureka Printing Co., Inc.; 1986.
  35. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc.; 1990. p. 315-322.
  36. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238-4246. doi: 10.1128/jb.172.8.4238-4246.1990.
  37. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. doi: 10.1093/nar/gkh340.
  38. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690. doi: 10.1093/bioinformatics/btl446.
  39. Felsenstein J. Confidence intervals on phylogenetics: an approach using bootstrap. Evolution. 1985;39(4):783-791. doi: 10.2307/2408678.
  40. Ronquist F, Teslenko M, Van der Mark P, et al. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539-542. doi: 10.1093/sysbio/sys029.
  41. Darriba D, Taboada GL, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772-772. doi: 10.1038/nmeth.2109.
  42. Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42(2):182-192. doi: 10.1093/sysbio/42.2.182.
  43. Alfaro ME, Zoller S, Lutzoni F. Bayes or bootstrap? A simulation study comparing the performance of bayesian markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol. 2013;20(2):255-266. doi: 10.1093/molbev/msg028.
  44. Tamura K, Stecher G, Peterson D, et al. MEGE 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. doi: 10.1093/molbev/mst197.
  45. AOAC. Official methods of analysis of AOAC international. 16th ed. Maryland (USA): AOAC International: gaithersburg; 1996.
  46. Kaewnarin K, Suwannarach N, Kumla J, et al. Phenolic profile of various wild edible mushroom extracts from Thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J Funct Foods. 2016;27:352-364. doi: 10.1016/j.jff.2016.09.008.
  47. Thitilertdecha N, Teerawutgulrag A, Rakariyatham N. Antioxidant and antimicrobial activities of Nephelium lappaceum L. extracts. LWT Food Sci Technol. 2008;41(10):2029-2035. doi: 10.1016/j.lwt.2008.01.017.
  48. Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231-1237. doi: 10.1016/s0891-5849(98)00315-3.
  49. Li Y, Guo C, Yang J, et al. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006;96(2):254-260. doi: 10.1016/j.foodchem.2005.02.033.
  50. Drechsler-Santos ER, Wartchow F, Coimbra VRM, et al. Studies on lentinoid fungi (Lentinus and Panus) from the semi-arid region of Brazil. J Torrey Bot Soc. 2012;139(4):437-446. doi: 10.3159/TORREY-D-12-00019.1.
  51. Kumar TKA, Manimohan P. A new species of Lentinus from India. Mycotaxon. 2005;92:119-123.
  52. Luangharn T, Karunarathna SC, Mortimer PE, et al. Morphological and molecular identification of Panus conchatus (Polyporaceae, Polyporales) from Yunnan province, China. SIF. 2019;4(1):253-262. doi: 10.5943/sif/4/1/27.
  53. Pegler DN. Agaric flora of Sri Lanka. Kew Bull Add Ser. 1986;12:1-519.
  54. Jeewon R, Hyde KD. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere. 2016;7(11):1669-1677. doi: 10.5943/mycosphere/7/11/4.
  55. Kumla J, Suwannarach N, Sujarit K, et al. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules. 2020;25(12):2811. doi: 10.3390/molecules25122811.
  56. Dimopoulou M, Kolonas A, Mourtakos S, et al. Nutritional composition and biological properties of sixteen edible mushroom species. Appl Sci. 2022;12(16):8074. doi: 10.3390/app12168074.
  57. Srikram A, Supapvanich S. Proximate compositions and bioactive compounds of edible wild and cultivated mushrooms from northeast Thailand. Arg Nat Resour. 2016;50(6):432-436. doi: 10.1016/j.anres.2016.08.001.
  58. Fabros JA, Dulay RMR, Fabros JA, et al. Distribution, cultivation, nutritional composition, and bioactivities of Lentinus (Polyporaceae, Basidiomycetes): a review. CREAM. 2022;12(1):170-219. doi: 10.5943/cream/12/1/13.
  59. Sharma SK, Gautam N. Chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species. Biomed Res Int. 2015;2015:346508. doi: 10.1155/2015/346508.
  60. Sales-Campos C, Vianez BF, de Abreu RLS. Productivity and nutritional composition of Lentinus strigosus (Schwinitz) fries mushroom from the Amazon region cultivated in sawdust supplemented with Soy bran. In: Krezhova D, editor. Recent trends for enhancing the diversity and quality of soybean products. London, United Kingdom: INTECH Open Access Publisher; 2011; p 546.
  61. Kakoti M, Hazarika DJ, Parveen A, et al. Nutritional properties, antioxidant and antihaemolytic activities of the dry fruiting bodies of wild edible mushrooms consumed by ethnic communities of northeast India. Pol. J. Food Nutr. Sci. 2021;71:463-480. doi: 10.31883/pjfns/144044.
  62. Sudheep NM, Sridhar KR. Nutritional composition of two wild mushrooms consumed by the tribals of the Western ghats of India. Mycology. 2014;5(2):64-72. doi: 10.1080/21501203.2014.917733.
  63. Nowacka N, Nowak R, Drozd M, et al. Antibacterial, antiradical potential and phenolic compounds of thirty-one polish mushroom. PLoS One. 2015;10 (10):e0140355. doi: 10.1371/journal.pone.0140355.
  64. Kosanic M, Rankovic B, Dasic M. Mushrooms as possible antioxidant and antimicrobial agents. Iran J Pharm Res. 2012;11(4):1095-1102.
  65. Rameah C, Pattar MG. Antimicribial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Pharm Res. 2010;2:107-112.
  66. Hussein JM, Tibuhwa DD, Mshandete AM, et al. Antioxidant properties of seven wild edible mushrooms from Tanzania. Afr. J. Food Sci. 2015;9(9):471-479. doi: 10.5897/AJFS2015.1328.
  67. Champatasi L, Chamnantap N, Saisong A, et al. The evaluation of potentials of antioxidant activities, total phenolic, flavonoid, and tannin contents from selected species in Amanita crude extract. J Thai Trad Alt Med. 2022;20:82-294.
  68. Abugria DA, McElhenneyb WH. Extraction of total phenolic and flavonoids from edible wild and cultivated medicinal mushrooms as affected by different solvents. J Nat Prod Plant Resour. 2013;3:37-42.
  69. Smolskaite L, Venskutonis PR, Talou T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT Food Sci Technol. 2015;60(1):462-471. doi: 10.1016/j.lwt.2014.08.007.
  70. Yildiz O, Can Z, Laghari AB, et al. Wild edible mushrooms as a natural source of phenolics and antioxidants. J Food Biochem. 2015;39(2):148-154. doi: 10.1111/jfbc.12107.
  71. Chu M, Khan RD, Zhou Y, et al. LC-ESI-QTOF-MS/MS characterization of phenolic compounds in common commercial mushrooms and their potential antioxidant activities. Processes. 2023;11(6):1711. doi: 10.3390/pr11061711.
  72. Liuzzi GM, Petraglia T, Latronico T, et al. Antioxidant compounds from edible mushrooms as potentialcandidates for treating age-related neurodegenerative diseases. Nutrients. 2023;15(8):1913. doi: 10.3390/nu15081913.
  73. Kozarski M, Klaus A, Jakovljevic D, et al. Antioxidants of edible mushrooms. Molecules. 2015;20(10):19489-19525. doi: 10.3390/molecules201019489.
  74. Ferreira ICFR, Barros L, Abreu RMV. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-1560. doi: 10.2174/092986709787909587.
  75. Mwangi RW, Macharia JM, Wagara IN, et al. The antioxidant potential of different edible and medicinal mushrooms. Biomed Pharmacother. 2022;147:112621. doi: 10.1016/j.biopha.2022.112621.
  76. Azieana J, Zainon MN, Noriham A, et al. Total phenolic and flavonoid content and antioxidant activities of ten Malaysian wild mushrooms. Open Access Libr J. 2017;04(11):e3987-9. doi: 10.4236/oalib.1103987.
  77. Song JG, Ha LS, Ki DW, et al. Chemical constituents of the culture broth of Panus rudis. Mycobiology. 2021;49(6):604-606. doi: 10.1080/12298093.2021.2004663.