pISSN 2799-8525 · eISSN 2799-8681 J Powder Mater 2024;31(5):431-436

Journal of Powder Materials

TiO₂ 첨가량에 따른 Nd₂O₃, Yb₂O₃ 첨가 YSZ 복합 소재의 고온 열화거동 분석

이계원^{1,2}, 최선웅¹, 박태준^{1,2}, 김종일¹, 이인환², 오윤석^{1,*}

¹한국세라믹기술원 엔지니어링소재센터 ²고려대학교 신소재공학과

Effect of TiO₂ Content on High-Temperature Degradation Behavior of Nd₂O₃ and Yb₂O₃-Doped YSZ Composite Materials

Gye-Won Lee^{1,2}, Seonung Choi¹, Tae-jun Park^{1,2}, Jong-il Kim¹, In-hwan Lee², Yoon-seok Oh^{1,*}

¹Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology,17303, Republic of Korea ²Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea

Hot section components of gas turbines are exposed to a high operating temperature environment. To protect these components, thermal barrier coatings (TBC) are applied to their surfaces. Yttria-stabilized zirconia (YSZ), which is widely used as a TBC material, faces limitations at temperatures above 1200 °C. To mitigate these issues, research has focused on adding lanthanide rare earth oxides and tetravalent oxides to prevent the phase-transformation of the monoclinic phase in zirconia. This study investigated the effects of varying TiO₂ content in Nd₂O₃ and Yb₂O₃ co-doped YSZ composites. Increasing TiO₂ content effectively suppressed formation of the monoclinic phase and increased the thermal degradation resistance compared to YSZ in environments over 1200 °C. These findings will aid in developing more thermally stable and efficient TBC materials for application in high-temperature environments.

Received: August 26, 2024 Revised: October 14, 2024 Accepted: October 17, 2024

*Corresponding author:

Yoon-seok Oh TEL: +82-31-645-1442 FAX: E-mail: ysoh30@kicet.re.kr

Keywords: Thermal Barrier Coating; Phase transformation; Thermal Degradation

1. Introduction

열차폐 코팅(Thermal Barrier Coating, TBC)은 우주 항공, 에너 지와 같은 다양한 분야에서 활용되고 있는 기법이며, 특히 가스터 빈 분야에서 주로 활용되고 있다. 가스터빈 분야에서 열차폐 코팅 의 역할은 압축기와 연소기를 통해 나온 고온, 고압의 연소 가스로 부터 Ni 기반의 초내열합금 부품들을 보호한다[1-6]. 열차폐 코팅 의 주요 소재로는 지르코니아 기반 세라믹 화합물이 주로 사용되고 있다. YSZ는 저열전도성, 높은 기계적 물성, 합금과 열팽창계수 차 이가 크지 않은 특성을 가지고 있으며, 이러한 특성을 기반으로 고 온의 연소 환경에서 발생하는 열로부터 초내열합금 모재를 보호하 기 위해 널리 사용되어 왔다. 하지만 가스터빈은 에너지 효율을 높

https://doi.org/10.4150/jpm.2024.00269 © 2024 The Korean Powder Metallurgy & Materials Institute 이기 위해 터빈 입구 온도 (Turbine Inlet Temperature: TIT)가 지 속적으로 상승하고 있다. 따라서 기존에 적용되는 소재, 즉YSZ는 약 1200°C 이상의 고온에서 내열 특성 저하가 발생하기에 이에 대 한 개선이 절실한 상황이다[1-8]. 지르코니아(ZrO₂)는 온도에 따라 상 변태 특성이 발현된다. 상온에서 약 1173°C까지는 Monoclinic 상을 가지며, 1173℃부터 2370℃까지 Tetragonal상, 2370°C 이상 의 온도에서는 Cubic상을 나타낸다[4, 7-10]. Monoclinic 상에서 Tetragonal 상으로 상변태 시 3~5%의 부피 변화가 발생하게 된다. 이러한 상변태에 의한 부피 변화는 열차폐 코팅에 적용된 지르코니 아가 고온의 환경에 노출될 때, 혹은 냉각 시 코팅층의 부피 변화로 인한 응력을 초래하여 결국에는 코팅층의 균열 및 박리가 발생하게 된다. 이러한 상변태로 인한 코팅층의 발리를 억제하기 위하여 지 르코니아에 3가 원소인 이트리아(Y₂O₃)를 4 mol.% 첨가한 이트리 아 안정화 지르코니아(YSZ)가 열차폐 코팅 소재로 사용되고 있다. YSZ는 상온에서도 Tetragonal 상으로 유지되는 특징을 가지고 있 으며, Atmospheric Plasma Spray (APS) 또는 Suspension Plasma Spray (SPS) 등의 용사 코팅 기법을 통해 코팅층을 형성한다. 이때 모재가 되는 Ni기반 초내열합금에 코팅층을 형성하는 경우, 급랭에 의하여 Non-Transformable Tetragonal (t') 상이 형성된다[4, 7-13]. 이러한 t' 상은 온도 변화와 상관없이 상변태 특성이 발현되 지 않는 특징을 가지고 있다. 그러나 YSZ는 1200°C 이상의 고온 환경에서 장시간 노출될 경우 이트리아의 확산에 의하여 열차폐 코 팅 시 형성된 non-transformable Tetragonal (t') 상이 점차 Monoclinic 상과 Cubic상으로 변화하게 된다[10, 14]. 이러한 열 화 거동에 의한 지르코니아의 상변태를 억제하기 위하여 다양한 연 구가 수행되고 있으며, 그중 3가 희토류 산화물을 첨가하는 연구가 활발하게 수행되고 있다[4, 5, 7-9]. 희토류 산화물을 첨가할 경우 부분 치환을 통해 지르코니아 격자에 산소 공공을 형성하고 원자 무게 차이를 통해 격자 왜곡을 유발하여 상안정성을 향상시키고 열 전도성을 낮출 수 있다. 또한, 4가 산화물인 TiO, 또한 지르코니아 보다 낮은 원자무게 및 이온 반경을 기반으로 지르코니아 격자에 왜곡을 유발하며, 상안정성과 열전도성을 낮출 수 있다고 알려져 있다[6, 11, 15-21]. 본 논문에서는 지르코니아와 이온 반경 및 원 자 무게의 차이를 통해 지르코니아의 격자 왜곡을 유발하여 소재의 Monoclinic 상 형성 거동을 확인하기 위하여 3가 란탄계 산화물인 Nd,O,와 Yb,O,을 사용하였다. 이후 Nd,O,, Yb,O,가 첨가된 복합 조성에 4가 산화물인 TiO,을 추가로 첨가하여 Monoclinic 상 형성 억제를 달성하고자 하였다.

2. Experimental Procedure

본 논문에 사용된 출발원료들을 구성하는 각 원소의 이온 반경 과 원자 질량을 아래 표에 나타내었다.

YSZ에 Nd₂O₃와 Yb₂O₃이 첨가된 복합조성에 지르코니아보다 이온 반경 및 원자 질량이 작은 TiO₂를 추가함으로써 TiO₂첨가량 에 따른 복합 소재의 상형성 거동 및 열전도도를 비교 분석하기 위 하여 아래 표와 같이 조성 설계를 수행하였다.

	Ti	Zr	Y	Yb	Nd
Ion radius (Å)	0.605	0.72	0.868	0.9	0.983
Atomic mass (u)	47.87	91.22	89.91	144.24	173.04

Table 2. Composition of modified YSZ

위의 조성 설계를 기반으로 열전도도 평가 및 상형성 거동을 비 교 분석하기 위하여 평균 입도 1 μm인 YSZ (Hankung TEC Co., 대한민국)와 평균 입도 3~5 µm인 ZrO₂, Y₂O₃, Nd₂O₃, Yb₂O₃, TiO, (SEWON Col, LTD., 대한민국)을 사용하였다. 조성에 맞는 시편을 제작하기 위하여 각 조성의 분말들을 계량 후 이소프로필 알코올(DAEJUNG, 대한민국)과 직경 5 mm의 지르코니아 볼을 사용하여 혼합 후 100 rpm의 속도로 24시간동안 습식 Ball Milling을 수행하였다. 습식 Ball Milling을 통해 분말 혼합이 끝난 혼 합물에서 지르코니아 볼을 제거 후 80°C로 설정된 오븐에서 24시 간동안 혼합물의 건조를 진행하여 이소프로필 알코올을 제거하였 다. 건조가 완료된 혼합물은 53 µm체를 사용하여 체가름을 수행하 여 미립화된 분말을 확보하였다. 체가름 된 분말들은 직경 16 mm 의 원형 몰드를 사용하여 10 MPa의 압력이 시편에 가해지도록 일 축 가압을 수행하였으며, 이후 190 MPa의 압력이 시편에 고르게 가해지도록 Cold Isostatic Press (CIP, Energyn, 대한민국)를 사용 하여 5분간 가압을 수행하였다. 가압이 끝난 시편들은 고온 전기로 (HanTech, 대한민국)에 넣어 5°C/min의 승온 속도로 1600°C까 지 승온 후 10시간동안 열처리하여 소결을 진행하였다. 이후 제작 된 시편들의 고온 열화 거동을 확인하기 위하여 5°C/min의 승온 속도로 1300°C까지 승온 후 100시간 및 300시간 열처리를 수행하 였다. 열처리된 시편의 상형성 거동 분석을 위하여 X-Ray Diffraction (XRD, RINT-2500HF, Rigaku, 일본)장비를 이용하여 분 석을 수행하였다. 시편의 Monoclinic 상 형성을 확인하기 위하여 10~80° 영역을 5°/min의 속도로 분석하였으며, Tetragonal 상 및 Cubic상 형성 거동을 분석하기 위하여 72~76° 영역을 0.2°/min 속도로 분석을 진행하였다. XRD 결과를 기반으로 시편 별 Monoclinic 상 형성 거동을 분석하기 위하여 아래의 식(1)을 활용하여 Monoclinic 상 형성 정도를 mol%로 계산하였다[11].

3. Results and Discussion

상용 열차폐 코팅 소재인 YSZ의 1600°C 소결 후와 1300°C에서 100시간 및 300시간 열처리한 시편의 XRD 분석 결과를 Fig. 1과 같이 나타내었다.

소결 직후 10~80° 영역에 대한 분석 결과 Monoclinic 상이 일 부 형성된 것을 확인할 수 있었으며, 식(1)을 활용하여 Monoclinic 상분율을 계산한 결과 약 5.53 mol.%의 Monoclinic 상이 형성된 것을 확인하였다. 또한, 지르코니아의 Tetragonal 상 및 Cubic 상

I I I I I I I I I I I I I I I I I I I									
Specimen/Additives	ZrO_2	Y ₂ O ₃ (mol.%)	Nd ₂ O ₃ (mol.%)	$Yb_2O_3(mol.\%)$	TiO ₂ (mol.%)				
YSZ	Bal.	4	-	-	-				
NdYbYSZ	Bal.	4	1	1	-				
1TiNdYbYSZ	Bal.	4	1	1	1				
5TiNdYbYSZ	Bal.	4	1	1	5				
10TiNdYbYSZ	Bal.	4	1	1	10				

Fig. 1. X-ray diffraction results of YSZ. (a) 10-80° (b) 72-76°

Fig. 2. X-ray diffraction results of NdYbYSZ. (a) 10-80° (b) 72-76°

형성을 구별하기 위하여 72~76° 영역에 대하여 XRD 분석을 수행 한 결과 Tetragonal 상 및 Cubic 상이 혼재된 구조를 확인할 수 있 었으며, Tetragonal 상이 여러 개로 나뉘어져 존재하는 것을 확인 하였다. 고온 환경에 장시간 노출된 YSZ의 열화 거동을 확인하기 위하여 1300℃에서 100시간 열처리한 시편의 Monoclinic 상 형성 거동을 분석한 결과 약 5.57%의 Monoclinic 상이 형성된 것을 확 인하였으며, 72~76° 영역의 XRD 분석 결과 1300°C 100시간 열 처리 후 소결 시편과 비슷하게 Tetragonal 상과 Cubic 상이 형성되 어 있는 것을 확인하였으며, 약 73.6°에 Cubic 상이 투렷하게 확인 되는 것을 확인할 수 있다. 1300℃ 300시간 열처리 후 10~80° 영 역 분석을 통한 Monoclinic 상 분율을 확인한 결과 약 34.38%의 Monoclinic 상이 형성된 것을 확인하였으며, 이는 소결 시편 대비 고온 열처리 후 약 28.8%의 Monoclinic 상이 증가됨을 확인하였 다. 또한 72~76° 영역에 대한 XRD 분석 결과 Tetragonal 상이 확 인되지 않고 Cubic 상만 확인되었다. 이러한 Monoclinic및 Cubic 상 형성 거동은 이트리아 안정화 지르코니아의 대표적인 열화 거동으로 이트리아의 확산에 의하여 이트리아가 많은 지르코니아과 이트리아가 적은 지르코니아로 나뉘게 된다. 이와 같이 가열에 따른 열에너지로부터 이트리아 확산이 진행되고 코팅층 내에는 이트리아가 모여 이트리아가 많은 지르코니아는 Cubic상으로 안정화가 진행된다. 이와 반대로 이트리아가 적은 지르코니아는 Monoclinic 상으로 상변화가 일어나게 된다[10, 14]. 지르코니아 대비 이온 반경이 큰 희토류인 Yb₂O₃ 및 Nd₂O₃을 지르코니아에 첨가한 NdY-bYSZ 조성의 XRD 분석 결과를 아래 Fig. 2와 같이 나타내었다.

소결 후 Monoclinic상이 형성된 것을 확인하였으며, NdYbYSZ 조성의 Monoclinic 상분율을 계산한 결과 약 18.3 mol.%의 Monoclinic상이 형성된 것을 확인하였다. 또한, Tetragonal 상 형 성을 확인하기 위하여 72~76° 영역을 분석한 결과 Tetragonal 상 형성 없이 Cubic 상만 형성된 것을 확인하였다. 이후 1300°C 100 시간 열처리를 통해 NdYbYSZ의 Monoclinic 상형성 거동을 확인 한 결과 약 15.78 mol.%의 Monoclinic 상 형성을 확인하였으며, 72~76° 영역에 대한 분석 결과 Cubic과 함께 Tetragonal 상이 일 부 형성된 것을 확인하였다. 1300°C 300시간 열처리 후 XRD 분 석 결과 약 18 mol.%의 Monoclinic 상이 형성된 것을 확인하였으 며, 이는 YSZ 대비 16.38 mol.% 적은 Monoclinic 상 형성 거동으 로 확인되었다. 이러한 결과는 이온 반경이 큰 3가 희토류인 Nd₂O₃, Yb₂O₃를 첨가함에 따라 이트리아 및 3가 희토류의 확산에 필요한 에너지가 증가하여 1300°C의 고온환경에 장시간 노출된 지르코니아의 Monoclinic 상 형성이 억제된 것으로 보인다[8].

NdYbYSZ의 Monoclinic 상 형성 억제를 극대화할 수 있도록 지르코니아보다 이온 반경이 작은 TiO_2 를 첨가하여 첨가량에 따른 NdYbYSZ의 상형성 거동 및 고온 상안정성을 확인하였다. 이에 TiO_2 를 1mol.% 첨가한 조성이 1TiNdYbYSZ 조성에 대한 XRD 분석 결과를 아래 Fig. 3과 같이 나타내었다.

소결 후 1TiNdYbYSZ의 Monoclinic 상 형성 거동을 계산한 결 과 약 15.13 mol.%의 Monoclinic 상이 형성된 것을 확인하였다. 또한 Tetragonal 상 형성을 확인하기 위하여 72~76° 영역을 분석 한 결과 Tetragonal상 형성 없이 Cubic상만 형성된 것을 확인하였 다. 이후 열화 거동을 확인하기 위하여 1300℃ 100시간 열처리를 수행하였으며, XRD 분석을 통해 Monoclinic 상 형성을 계산한 결 과 약 13.58 mol.%의 Monoclinic 상 형성을 확인하였다. 이때 72~76° 영역을 분석한 결과 Cubic 상 이외에 Tetragonal 상이 확 인되었다. 1300°C 300시간 열처리 후 Monoclinic 상 형성 결과 약 13.39 mol.%의 Monoclinic 상 형성을 확인하였다. 이러한 결 과는 고온의 열처리가 진행되었을 때, YSZ 및 NdYbYSZ의 Monoclinic 상이 증가하는 경향성을 보인 것과 반대로 TiO₂이 1 mol.% 첨가된 조성은 Monoclinic 상 형성이 억제되고 오히려 감 소한 경향성을 확인하였다. 이러한 경향성은 크기가 작은 Ti이 1 mol% 첨가되었을 때, 크기가 큰 Nd₂O₃, Yb₂O₃, Y2O3와 함께 격 자 왜곡 효과가 증가하여 열처리 시간이 증가함에 따라 소결 후 형 성된 monoclinic상이 tetragonal 상으로 부분 상변태 한것으로 보 인다[22].

TiO₂ 첨가량을 5mol.%로 증가시킨 5TiNdYbYSZ 조성의 XRD 분석 결과를 Fig. 4와 같이 나타내었다.

소결 후 5TiNdYbYSZ의 Monoclinic 상 분율을 계산한 결과 약 2.19 mol.%의 Monoclinic 상이 형성된 것을 확인하였으며, TiO, 이 1mol.% 첨가된 1TiNdYbYSZ 조성 대비 약 12.94 mol.% 감소 한 결과를 확인하였다. 또한 YSZ 대비 Monoclinic 상분율이 약 3.24 mol.% 감소한 것을 확인하였으며, 이러한 결과를 기반으로 소결 후 TiO, 첨가량이 증가함에 따라 지르코니아의 Monoclinic 상 형성이 억제되는 효과가 있음을 알 수 있다. 또한, Tetragonal 상 형성 거동을 확인하기 위하여 72~76° 영역을 분석한 결과 Cubic상 과 Tetragonal 상이 같이 형성된 것을 확인하였다. 이후 열화 거동 을 확인하기 위하여 1300°C 100시간 열처리 후 XRD 분석을 진행 하였으며, Monoclinic 상분율을 계산한 결과 약 5.89 mol.%의 Monoclinic 상형성을 확인하였다. 1300°C 300시간 열처리 후 XRD 분석을 실시한 결과 Monoclinic 상이 약 8.17 mol.%가 형성 된 것을 확인하였다. Tetragonal 상 형성 여부를 확인하기 위하여 72~76° 영역을 분석한 결과 100시간 및 300시간 열처리 후 소결 후 확인되었던Cubic상과 Tetragonal상 이외에 73°와 74.5° 부근에 서 Tetragonal 상이 추가적으로 나타나는 것을 확인하였다.

TiO₂를 10 mol.% 첨가한 10TiNdYbYSZ 조성의 XRD 분석 결 과를 아래 Fig. 5와 같이 나타내었다.

소결 후 10TiNdYbYSZ의 Monoclinic 상 분율을 계산한 결과 Monoclinic 상이 형성되지 않은 것을 확인하였다. 이는 TiO_2 를 10 mol.% 넣었을 때 지르코니아의 Monoclinic 상 형성을 효과적으 로 억제할 수 있음을 의미한다. 또한, 72~76° 영역 분석 결과 Cubic 상과 Tetragonal 상이 같이 형성된 것을 확인하였다. 이후

Fig. 3. X-ray diffraction results of 1TiNdYbYSZ. (a) 10-80° (b) 72-76°

76

Fig. 4. X-ray diffraction results of 5TiNdYbYSZ. (a) 10-80° (b) 72-76°

Fig. 5. X-ray diffraction results of 10TiNdYbYSZ. (a)10-80° (b) 72-76°

1300°C 100시간 열처리 후 XRD 분석을 실시한 결과 약 6.24 mol.%의 Monoclinic 상이 형성된 것을 확인하였다. 1300°C 300 시간 열처리 후 Monoclinic 상 분율을 계산한 결과 약 9.73 mol.% 의 Monoclinic이 형성된 것을 확인하였다. Tetragonal 상 형성을 확인하기 위하여 72~76° 영역에 대하여 XRD 분석을 진행한 결과 73°와 74.5° 부근에서 Tetragonal 상이 1300℃ 열처리를 진행함에 따라 나타나는 것을 확인하였다. TiO₂ 첨가량에 따른 NdYbYSZ 조성의 Monoclinic 상 형성 및 Tetragonal 상 형성 거동을 분석한 결과 TiO₂ 첨가량이 증가함에 따라 소결 후 Monoclinic 상 형성이 줄어드는 경향성을 확인하였다. 이러한 결과는 지르코니아 대비 낮 은 이온 반경을 가지는 TiO₂가 지르코니아 격자 내에 격자 왜곡을 유발하여 첨가량이 증가함에 따라 Monoclinic 상 형성을 억제한 것으로 보인다[16, 18]. TiO₂ 첨가량에 따른 상형성 거동을 확인한 결과 TiO, 첨가량이 없는 NdYbYSZ는 소결 후 Monoclinic 상분 율이 YSZ보다 약12.77 mol.% 높았으며, 1 mol.%일 때 YSZ보다 약 9.6 mol.% 높은 것을 확인하였다. 첨가량이 5 mol.%일 때 YSZ 보다 약 3.34 mol.% 낮아졌으며, 10 mol.%일 때 Monoclinic 상 이 형성되지 않아 TiO₂ 첨가량이 증가함에 따라 소결 후 Monoclinic 상 형성을 억제할 수 있음을 확인하였다.

4. Conclusion

YSZ가 고온의 환경에 장시간 노출되었을 때, 이트리아의 확산에 의하여 지르코니아의 tetragonal 상이 monoclinic 상과 cubic상으 로 상변태하게 된다. 고온의 환경에 장시간 노출되었을 때 이트리 아의 확산에 의하여 지르코니아의 상변태가 발생하는 열화 거동을 최소화하기 위하여 본 논문에서는 Nd₂O₃, Yb₂O₃, TiO₂를 첨가하 여 첨가량에 따른 소재의 Monoclinic 상형성 거동 및 고온 열화 거 동에 대하여 분석하였다. 희토류 첨가 조성의 Monoclinic을 분석 한 결과 NdYbYSZ 조성의 경우 소결 후 18.3 mol.%의 Monoclinic 상 형성 거동을 보였으나, 1300°C 300시간 열처리 후 18 mol.%의 Monoclinic 상 형성 거동을 확인하여 추가적인 Monoclinic 상형성이 거의 일어나지 않음을 확인하였다. 1TiNdYbYSZ 조성의 경우 소결 후 Monoclinic 상이 15.13 mol.% 였으나, 1300°C 300시간 열처리 후 13.39 mol.%로 Monoclinic 상이 낮 아진 것을 확인하였다. 이는 첨가된 Ti이 격자 왜곡을 기반으로 tetragonal상의 안정성을 향상시키며 나타난 경향성으로 보인다 [22]. 5TiNdYbYSZ 조성의 경우 소결 후 2.19 mol.%의 Monoclinic 상형성을 확인하였으며, 1300°C 300시간 열처리 후 8.17 mol.% Monoclinic상이 추가적으로 형성된 거동을 확인하였다. 10TiNdYbYSZ 조성의 경우 소결 후 Monoclinic 상이 형성되지 않음을 확인하였으며, 1300°C 300시간 열처리 후 9.73 mol.% Monoclinic상이 형성된 것을 확인하였다. 이러한 결과를 종합하 였을 때, TiO, 이 5mol.% 이상 첨가될 경우 고온의 환경에 장시간 노출되어도 Monoclinic 상형성을 최소화하여 부피 변화로 인한 응 력을 최소화할 수 있음을 확인하였고, 열차폐 코팅 수명을 향상시 킬 수 있을 것으로 기대된다.

Conflict of Interest Declaration

저자들은 이해상충관련 해당사항 없음을 선언합니다.

Author Information and Contribution

이계원 : 학생연구원 / 실험 디자인, 분말 준비, 논문 초안 작성. 최선웅 : 인턴연구원 / 물성 분석 및 데이터 정리. 박태준 : 학생연 구원 / 물성 분석 및 데이터 정리. 김종일 : 선임연구원 / 실험 디자 인 및 논문 작성. 이인환 : 교수 / 실험 디자인 및 논문 작성. 오윤 석 : 수석연구원 / 실험 디자인, 논문 작성, 연구책임자

Acknowledgement

본 연구는 민군협력진흥원 민군겸용기술개발사업(20-CM-CE-14)의 연구지원으로 수행되었습니다.

References

[1] R. A. Miller: J. Therm. Spray Technol., **6** (1997) 35.

- [2] J. G. Thakare, C. Pandey, M. M. Mahapatra and R. S. Mulik: Met. Mater. Int., 27 (2021) 1947.
- [3] A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage and N. Hitchman: J. Therm. Spray Technol., 17 (2008) 199.
- [4] R. Vaßen, M. O. Jarligo, T. Steinke, D. E. Mack and D. Stöver: Surf. Coat. Technol., 205 (2010) 938.
- [5] Q. Wei, H. Guo, S. Gong and H. Xu: Thin Solid Films, 516 (2008) 5736.
- [6] Z. Shen, Z. Liu, R. Mu, L. He and G. Liu: Appl. Surf. Sci. Adv., 3 (2021) 100043.
- [7] E. V. Dudnik, S. N. Lakiza, I. N. Hrechanyuk, A. K. Ruban, V. P. Redko, I. O. Marek, V. B. Shmibelsky, A. A. Makudera and N. I. Hrechanyuk: Powder Metall. Met. Ceram., 59 (2020) 179.
- [8] M. Bahamirian, S. M. M. Hadavi, M. Farvizi, M. R. Rahimipour and A. Keyvani: Ceram. Int., 45 (2019) 7344.
- [9] D. Chen, Q. Wang, Y. Liu and X. Ning: Surf. Coat. Technol., 403 (2020) 126387.
- [10] M. Kibsey, J. Romualdez, X. Huang, R. Kearsey and Q. Yang: J. Eng. Gas Turbines Power, 133, (2011) 122101.
- [11] H. Jeon, I. Lee and Y. Oh: Ceram. Int., 48 (2022) 8177.
- [12] L. Guo, M. Li and F. Ye: Ceram. Int., **42** (2016) 7360.
- [13] J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke: J. Am. Ceram. Soc., 92 (2009) 1901.
- [14] X. Ren and W. Pan: Acta Mater., 69 (2014) 397.
- [15] T. A. Schaedler, R. M. Leckie, S. Krämer, A. G. Evans and C. G. Levi: J. Am. Ceram. Soc., **90** (2007) 3896.
- [16] G. Witz, V. Shklover, W. Steurer, S. Bachegowda and H. P. Bossmann: J. Am. Ceram. Soc., 90 (2007) 2935.
- [17] M. T. Colomer, C. Guglieri, S. Díaz-Moreno, M. Maczka, R. Boada and J. Chaboy: J. Alloys. Compd., 689 (2016) 512.
- [18] L. Guo, C. Zhang, L. Xu, M. Li, Q. Wang, F. Ye, C. Dan and V. Ji: J. Eur. Ceram. Soc., 37 (2017) 4163.
- [19] T. Chen, S. Tekeli, R. P. Dillon and M. L. Mecartney: Ceram. Int., 34 (2008) 365.
- [20] M. Zhao and W. Pan: Acta Mater., **61** (2013) 5496.
- [21] M. Zhao, X. Ren and W. Pan: J. Am. Ceram. Soc., 97 (2014) 1566.
- [22] J. Gong, P. Gao, G. Han, Q. Ma, L. Zhong, X. Wang and B. Yang: Ceram. Int., 49 (2023) 37991.