DOI QR코드

DOI QR Code

Effect of Sintering Conditions on the Microstructure of an FeCrMnNiCo High-Entropy Alloy

소결 조건에 따른 FeCrMnNiCo 고엔트로피 합금의 미세조직 변화

  • Seonghyun Park (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Sang-Hwa Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Junho Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Seok-Jae Lee (Division of Advanced Materials Engineering, Jeonbuk National University) ;
  • Jae-Gil Jung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 박성현 (전북대학교 신소재공학부) ;
  • 이상화 (전북대학교 신소재공학부) ;
  • 이준호 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부) ;
  • 정재길 (전북대학교 신소재공학부)
  • Received : 2024.07.09
  • Accepted : 2024.09.21
  • Published : 2024.10.28

Abstract

We investigated the microstructure of an FeCrMnNiCo alloy fabricated by spark plasma sintering under different sintering temperatures (1000-1100℃) and times (1-600 s). All sintered alloys consisted of a single face-centered cubic phase. As the sintering time or temperature increased, the grains of the sintered alloys became partially coarse. The formation of Cr7C3 carbide occurred on the surface of the sintered alloys due to carbon diffusion from the graphite crucible. The depth of the layer containing Cr7C3 carbides increased to ~110 ㎛ under severe sintering conditions (1100℃, 60 s). A molten zone was observed on the surface of the alloys sintered at higher temperatures (>1060℃) due to severe carbon diffusion that reduced the melting point of the alloy. The porosity of the sintered alloys decreased with increasing time at 1000℃, but increased at higher temperatures above 1060℃ due to melting-induced porosity formation.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 기초연구실지원사업(No. RS-2023-00217415)으로 수행되었습니다. 전자현미경 분석에 도움을 주신 전북대학교 공동실험실습관(Center for University-wide Research Facilities, CURF)에 감사드립니다.

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau and S.-Y. Chang: Adv. Eng. Mater., 6 (2004) 299.
  2. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent: Mater. Sci. Eng. A, 375 (2004) 213.
  3. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw: Adv. Eng. Mater., 10 (2008) 534.
  4. J.-W. Yeh: JOM, 67 (2015) 2254.
  5. D. B. Miracle and O. N. Senkov: Acta Mater., 122 (2017) 448.
  6. E. P. George, W. A. Curtin and C. C. Tasan: Acta Mater., 188 (2020) 435.
  7. B. Gludovatz, A. Honenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie: Science, 345 (2014) 1153.
  8. Z. J. Zhang, M. M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. X. Mao, E. P. George, Q. Yu and R. O. Ritchie: Nat. Commun., 6 (2015) 10143.
  9. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle and C. F. Woodward: J. Alloys. Compd., 509 (2011) 6043.
  10. Z. Wang, W. Lu, D. Raabe and Z. Li: J. Alloys Compd., 781 (2019) 734.
  11. J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh and Z. P. Lu: Intermetallics, 55 (2014) 9.
  12. B. Schuh, F. M. Martin, B. Volker, E. P. George, H. Clemens, R. Pippan and A. Hohenwarter: Acta Mater., 96 (2015) 258.
  13. F. Otto, A. Dlouhy, K. G. Pradeep, M. Kubenova, D. Raabe, G. Eggeler and E. P. George: Acta Mater., 112 (2016) 40.
  14. E. J. Pickering, R. Munoz-Moreno, H. J. Stone and N. G. Jones: Scr. Mater., 113 (2016) 106.
  15. N. D. Stepanov, N. Y. Yurchenko, M. A. Tikhonovsky and G. K. Salishchev: J. Alloys Compd., 687 (2016) 59.
  16. C. Wang, Y. Yu, H. Zhang, L. Xu, X. Ma, F. Wang and B. Song: J. Mater. Res. Technol., 15 (2021) 5187.
  17. Q. Ye, K. Feng, Z. Li, F. Lu, R. Li, J. Huang and Y. Wu: Appl. Surf. Sci., 396 (2017) 1420.
  18. Y. J. Li, A. Savan and A. Ludwig: Appl. Phys. Lett., 119 (2021) 201910.
  19. L. L. Xiao, Z. Q. Zheng, S. W. Guo, P. Huang and F. Wang: Mater. Des., 194 (2020) 108895.
  20. C. Wagner and G. Laplanche: Int. J. Plast., 166 (2023) 103651.
  21. J. M. Torralba, P. Alvaredo and A. Garcia-Junceda: Powder Metall., 62 (2019) 84.
  22. K. B. Zhang, Z. Y. Fu, J. Y. Zhang, J. Shi, W. M. Wang, H. Wang, Y. C. Wang and Q. J. Zhang: J. Alloys Compd., 485 (2009) L31.
  23. S.-H. Joo, H. Kato, M. J. Jang, J. Moon, E. B. Kim, S.-J. Hong and H. S. Kim: J. Alloys Compd., 698 (2017) 591.
  24. M. Laurent-Brocq, P.-A. Goujon, J. Monnier, B. Villeroy, L. Perriere, R. Pires and G. Garcin: J. Alloys. Compd., 780 (2019) 856.
  25. R. Ravi and S. R. Bakshi: J. Alloys Compd., 883 (2021) 160879.
  26. K. E. Smetanina, P. V. Andreev, A. V. Nokhrin, E. A. Lantsev and V. N. Chuvildeev: J. Alloys Compd., 973 (2024) 172823.
  27. C. A. Schneider, W. S. Rasband and K. W. Eliceiri: Nat. Methods, 9 (2012) 671.
  28. X. Song, X. Liu and J. Zhang: J. Am. Ceram. Soc., 89 (2006) 494.
  29. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler and E. P. George: J. Alloys Compd., 623 (2015) 348.
  30. R. Li, P. Niu, T. Yuan, P. Cao, C. Chen and K. Zhou: J. Alloys Compd., 746 (2018) 125.
  31. Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma and D. Yi: J. Alloys Compd., 509 (2011) 5242.