DOI QR코드

DOI QR Code

Machine Learning Modeling of the Mechanical Properties of Al2024- B4C Composites

  • Maurya A. K. (Lightweight Materials Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Narayana P. L. (Lightweight Materials Research Division, Korea Institute of Materials Science (KIMS)) ;
  • Wang X.-S. (Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University) ;
  • Reddy N. S. (Engineering Research Institute, School of Materials Science and Engineering, Gyeongsang National University)
  • 투고 : 2024.08.02
  • 심사 : 2024.09.27
  • 발행 : 2024.10.28

초록

Aluminum-based composites are in high demand in industrial fields due to their light weight, high electrical conductivity, and corrosion resistance. Due to its unique advantages for composite fabrication, powder metallurgy is a crucial player in meeting this demand. However, the size and weight fraction of the reinforcement significantly influence the components' quality and performance. Understanding the correlation of these variables is crucial for building high-quality components. This study, therefore, investigated the correlations among various parameters-namely, milling time, reinforcement ratio, and size-that affect the composite's physical and mechanical properties. An artificial neural network model was developed and showed the ability to correlate the processing parameters with the density, hardness, and tensile strength of Al2024-B4C composites. The predicted index of relative importance suggests that the milling time has the most substantial effect on fabricated components. This practical insight can be directly applied in the fabrication of high-quality Al2024-B4C composites.

키워드

참고문헌

  1. I. Estrada-Guel, C. Carreno-Gallardo, D.C. Mendoza-Ruiz, M. Miki-Yoshida, E. Rocha-Rangel and R. Martinez-Sanchez: J. Alloys Compd., 483 (2009) 173.
  2. L. Ceschini, I. Boromei, G. Minak, A. Morri and F. Tarterini: Compos. Sci. Technol., 67 (2007) 605.
  3. B. Torres, M. Lieblich, J. Ibanez and A. Garcia-Escorial: Scr. Mater., 47 (2002) 45.
  4. F. Tang, I. E. Anderson, T. Gnaupel-Herold and H. Prask: Mater. Sci. Eng., A, 383 (2004) 362.
  5. A. Canakci, S. Ozsahin and T. Varol: Powder Technol., 228 (2012) 26.
  6. N. Zeoli, H. Tabbara and S. Gu: Chem. Eng. Sci., 66 (2011) 6498.
  7. T. Varol, A. Canakci and S. Ozsahin: Compos. Part B, 54 (2013) 224.
  8. H. Abdoli, E. Salahi, H. Farnoush and K. Pourazrang: J. Alloys Compd., 461 (2008) 166.
  9. S. P. Dwivedi: Mater. Today Proc., 25 (2020) 751.
  10. L.V. Fausett, Pearson Education India, (2006)
  11. S. Malinov and W. Sha: Comput. Mater. Sci., 28 (2003) 179.
  12. I. A. Basheer and M. Hajmeer: J. Microbiol. Methods, 43 (2000) 3.
  13. Y. LeCun, Y. Bengio and G. Hinton: Nature, 521 (7553) (2015) 436.
  14. N. Reddy, J. Krishnaiah, S.-G. Hong and J. S. Lee: Mater. Sci. Eng. A, 508 (2009) 93.
  15. C. H. Park, D. Cha, M. Kim, N. Reddy and J.-T. Yeom: Met. Mater. Int., 25 (2019) 768.
  16. A. Lee, Z. W. Geem and K.-D. Suh: Appl. Sci., 6 (2016) 164.
  17. A. K. Maurya, P. L. Narayana, A. G. Bhavani, J.-K. Hong, J.-T. Yeom and N. S. Reddy: J. Electrostat., 104 (2020) 103425.
  18. X. Yu, M. O. Efe and O. Kaynak: IEEE Trans. Neural Networks, 13 (2002) 251.
  19. J. Leonard and M. Kramer: Comput. Chem. Eng., 14 (1990) 337.
  20. F. Fan, W. Cong and G. Wang: Int. J. Numer. Methods Biomed. Eng., 34 (2018) e2956.
  21. P. L. Narayana, S. W. Lee, C. H. Park, J.-T. Yeom, J.-K. Hong, A. K. Maurya and N. S. Reddy: Comput. Mater. Sci., 179 (2020) 109617.
  22. P. Narayana, J. H. Kim, A. Maurya, C. H. Park, J.-K. Hong, J.-T. Yeom and N. S. Reddy: Metals, 10 (2020) 256.
  23. N. Parvin, R. Assadifard, P. Safarzadeh, S. Sheibani and P. Marashi: Mater. Sci. Eng., A, 492 (2008) 134.
  24. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy and V. K. Iyer: Powder Technol., 209 (2011) 124.
  25. H. R. Hafizpour, M. Sanjari and A. Simchi: Mater. Des., 30 (2009) 1518.
  26. G. A. Bagheri: J. Alloys Compd., 676 (2016) 120.
  27. A. Canakci, T. Varol and S. Ertok: Sci. Eng. Compos. Mater., 19 (2012) 227.
  28. P. Singh, A. Abhash, B. N. Yadav, M. Shafeeq, I. B. Singh and D. P. Mondal: Powder Technol., 342 (2019) 275.
  29. G. Manohar, K. M. Pandey and S. R. Maity: Mater. Today Proc., 45 (2021) 6882.
  30. B. N. A. Kumar, A. Ahamad and H. N. Reddappa: Mater. Today Proc., 52 (2022) 2136.
  31. H. Karakoc: Silicon, 15 (2023) 6729.
  32. R. Raj and D. G. Thakur: Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 233 (2018) 1345.
  33. T. Varol and A. Canakci: Powder Technol., 246 (2013) 462.
  34. E. Ghandourah, H. Ahmadian, T. Zhou, A. M. Sadoun, A. Fathy, M. Atif, A. S. Kumar and G. Weijia: Mater. Today Commun., 38 (2024) 107835.
  35. B. P. Sahoo, D. Das and A. K. Chaubey: Mater. Sci. Eng. A, 825 (2021) 141873.
  36. R. Zheng, X. Hao, Y. Yuan, Z. Wang, K. Ameyama and C. Ma: J. Alloys Compd., 576 (2013) 291.
  37. W. Chen, Z. Li, T. Lu, T. He, R. Li, B. Li, B. Wan, Z. Fu and S. Scudino: Mater. Sci. Eng. A, 762 (2019) 138116.
  38. U. K. Annigeri and G. B. V. Kumar: Mater. Today Proc., 5 (2018) 11233.
  39. L.-F. Yi, S. Kunimoto, T. Ishii, L. He, T. Onda and Z.-C. Chen: Mater. Sci. Eng., A, 871 (2023) 144904.