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Abstract 

To address the issues of high cost and low accuracy in the manual detection method, an improved singular 

value decomposition (SVD)-based fabric defect detection method was proposed in this study. The method first 

performed noise reduction by wavelet transform; then the image was segmented. Finally, SVD was applied to 

remove background texture information and improve detection accuracy. The results for the detection of 

different types of fabric defects showed that the improved SVD method for stiffness detection of fabrics was 

highly efficient and accurate. The computational complexity, data redundancy and detection results of different 

sub-image sizes of pixels were all significant. The area under the curve (AUC) value of the star and check fabric 

was inferior to the defect fabric. The method is highly accurate for different fabric types and can be 

subsequently applied to the detection of stiffness in apparel fabrics, providing a reference for textile 

manufacturing production. 
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1. Introduction 

The stiffness of the apparel fabric is different from the color performance of the apparel fabric, which 

is called rigid and soft together with the softness. The stiffness of the fabric can be obtained by the fabric 

stiffness meter, the greater the resistance to bending length, the more stiff the fabric. The factors affecting 

stiffness include fiber stiffness, yarn structure, and fabric weave structure [1–3]. In the background of the 

maturing image processing technology, the defect detection method of wearing fabrics has been 

developed rapidly. 

The defect detection methods for clothing fabrics can be divided into plain fabrics and patterned fabrics 

according to different fabric types. The detection methods include statistical method, spectral method, 

model method, and so on. Each detection method has ideal detection results, but these detection methods 

are easy to be affected by external environment, making their detection accuracy unstable [4,5]. The 

singular value decomposition (SVD) of a matrix is a factorization of that matrix into three matrices, which 

owns some interesting algebraic properties and conveys important geometrical and theoretical insights 

about linear transformations. Aamir et al. [6,7] used SVD to obtain singular value matrices (SVMs), UA 
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and VA, which contained high-frequency elements of an input image. Currently, a few scholars pointed 

out that SVD had an excellent detection effect in the process of taking fabric inspection. In view of this, 

this study uses SVD technology to compress and reduce the dimensionality of fabric images, and 

enhances SVD technology through region of interest (ROI) image segmentation method. An in-depth 

analysis is carried out with the aim of achieving defect detection in wearing fabrics. During the process 

of introducing ROI, the interference of fabric texture background energy information in the ROI area is 

removed. The purpose of this study is to propose a more efficient and accurate identification technology 

for clothing fabrics. It is expected that this method can provide a reference for textile manufacturing 

production. In this study, an improved fabric defect detection method based on SVD is proposed. The 

first part of this study is the introduction, mainly describing the background and research objectives. The 

second part is the literature review, analyzing the existing achievements of fabric defect recognition 

technology. The third part is the main research method, which analyzes the application of SVD in fabric 

detection. The fourth part conducts experiments to verify the effectiveness of the method. Last, a 

summary is conducted for this study. 

 

 

2. Review of the Literature 

To improve the accuracy of fabric defect detection, reduce the complexity of the computational process 

and data imbalance, Huang et al. [8] proposed an effective convolutional neural network for the detection 

of fabric defects. Jun et al. [9] addressed the current increase in automation and labor costs in the textile 

industry and presented a two-stage strategy for applying deep convolutional neural networks for defect 

point detection. The strategy included local defect prediction and global defect identification. The dataset 

test results showed that the given method had superior performance in detecting fabric defect points. A 

hybrid supervised fabric defect point detection method based on a Gaussian mixture model and a 

variational autoencoder were given by Zhou et al. [10]. To improve the spatial resolution of spatial 

resolution hyperspectral images, Dian and Li [11] proposed a new low-tensor multi-rank regularization 

fusion method based on subspace. This method used SVD to learn the spectral subspace of low spatial 

resolution hyperspectral images. Tests on two datasets verified the superiority of this method. Guo and 

Hesthaven [12] presented a data-driven base reduction method for parametric time-varying problems. 

This method utilized the natural tensor grid between time and parameters in the database, and extracted 

the principal components of the projection coefficient data through SVD. Zhang et al. [13] designed a 

static output feedback controller for a nonlinear switching system, taking into account the possible 

transmission barriers between the actuator and the controller, drawing on the advantages of SVD. The 

method was non-invasive and fully decoupled between the offline and online phases, providing a reliable 

and effective tool for approximating parametric time-varying problems. 

Combined with the research status of scholars at home and abroad, the SVD method has ideal effects 

in the fields of image quality enhancement and detection of mechanical condition. However, deep 

learning methods require a large number of labeled defect samples for training, which is tough to 

implement in practice. Based on this, the study provides an in-depth analysis of SVD theory and applies 

it to the detection of fabric stiffness, aiming to contribute technology to textile quality enhancement. 
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3. Stiffness Testing of Wearing Fabrics with Improved SVD 

3.1 SVD Theory and Core Principles 

SVD is widely used in dimensionality reduction, data compression, recommendation systems, etc. A 

matrix of the form � × � is represented by � and the rank of the matrix is �. � and � refer to the 

corresponding rows and columns of the matrix, respectively. Normally, � ≥ � and � are equal to or 

greater than �. The SVD of the matrix � is given in Eq. (1): 

 � = ���� = � 	��×� 0

0 0

 �� (1) 

 

In Eq. (1), the � × � matrix of order is �; The matrix of order � × � is ��; The diagonal array of 

order � × �  is � . When � ≠ � , �  and �  represent the columns and rows of the diagonal array � , 

respectively; Then ��� = 0 ; when � = � , then ��� = ��� = �� ≥ 0 . The matrices �  and �  are two 

orthogonal matrices, a left singular matrix and a right singular matrix, respectively. Fig. 1 is a schematic 

diagram referring to the SVD. The diagonal matrix � is arranged in a decreasing form on the diagonal �� 

and the corresponding diagonal elements represent the eigenvectors of the left and right singular matrices. 

 

 
Fig. 1. Schematic diagram of SVD. 

 

The expression for calculating the decomposition of the diagonal matrix � is Eq. (2). The matrix � can 

be considered as a sum of the rank-matrices ������. 

 

�� = ��� 0 ⋯ 0

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

� × �0 0 ⋯ 0

0 �� ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

� (2) 

 

In Eq. (2), the composition matrix of the matrix � is ������. The optimal approximation matrix of 

the diagonal array � can be obtained by processing the first few values with larger singular values and 

the corresponding eigenvectors. The eigenvectors of � and �� can be determined directly. Firstly, �� is 

found and the diagonal array � is diagonalized to ���, as shown in Eq. (3): 

 ��� = ����� (3) 
 

The matrix of order � is then calculated and the expression is given in Eq. (4): 
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� = ����� (4) 
 

In Eq. (4), the eigenvectors of the � and � matrices are obtained by the Gram-Schmidt transformation. 

Next, the optimal approximation array for the matrix � rank � is calculated, see Eq. (5): 

 �(	) = ∑	
�
� ������. (5) 

 

The optimal approximation array for the matrix � in Eq. (5) is �(	). �(	) and � matrices both have the 

smallest mean squared difference MMSE, as shown in Eq. (6): 

 

���� = (1/��)��
�
�

��
�
�

���� − �
��

(	)��. (6) 

 

In Eq. (6), the singular value of the matrix decreases rapidly as the row and column values increase, 

i.e., the image matrix obtained after the rank reduction process is, which has the same order as the original 

image matrix. The retention of the basic features of the original image needs to satisfy Eq. (7): 
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�
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�
���

�
�

≤ ���� , � < �. (7) 

 

In Eq. (7), the signal-to-noise ratio of the image is referred to by ����. An element of the original 

textile image is ��,�; � and �, respectively represent the length and width of the image filtering area. �  

denotes the variance proportional coefficient. The number of singular values of the original matrix after 

the rank reduction is �. 

 

3.2 Applying SVD to Remove Background Texture Information from Fabric 

Taking Images 

In the field of matrix decomposition, SVD has the advantage of good robustness and high accuracy. In 

the defective fabric image, defects only occupy a part of the entire fabric image, and the gray level 

changes between the advanced defect area and the defect area are more obvious. Therefore, the fabric 

image is first automatically segmented to identify the ROI part containing defects, which is automatically 

set by comparing it with the defect free template fabric image. The more interwoven points in the fabric, 

the stiffer the fabric, with satin being the softest, followed by twill and smooth being the stiffest. 

The study identifies defective and non-defective regions by removing singular values that contain 

information about the background texture of the fabric. The size of the fabric image is set to � × �. When 

both are the same, the image is considered to be referred by the �� feature values. The number of feature 

values available after SVD is 2�� + �, which increases the complexity of the operation. As the size of 

the image changes, the number of singular values used to obtain fabric background information also 

changes. Therefore, the number of singular values of the fabric background information is the type of 

background information that can be sadly removed, which can be obtained by comparing the template 

image with the defective point image. The template image needs to be split into several sub-images to 

reduce the computational effort. Assuming a window image of size (� × �), the expression for the number 

of non-overlapping sub-images � is calculated as Eq. (8): 
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� = (�/� × �/�) (8) 
 

The first singular value of the image without defective sub-windows is normalized to obtain the average 

value, as shown in Eq. (9): 
 

‾��(�,�) = 1���/�
�
�

��/�
�
�

��(�,�). (9) 

 

In Eq. (9), the normalized singular value of the subgraph � of the subgraph (�,�) of the template fabric 

image is  ‾��(�, �). The formula for calculating is Eq. (10): 

 

 ��"�, �# =
 ��"$, %# − �

�"�, �#&��"�, �# . (10) 

 

In Eq. (10), the mean of all the singular values of the subwindow � of the (�, �) subgraph is �
�"�, �#. 

The standard deviation is &��"�, �#. The &��"�,�# is the normalized singular value of the subgraph of the �($, %) subgraph. Setting the singular value of the i-th subwindow of the (�, �)-th subgraph of the defect 

image to  �"�, �#, as shown in Eq. (11): 

  ��(�, �) = $%�' �(�, �) −  ‾��(�,�)( (11) 
 

In Eq. (11), when the background information of the fabric is obscured or masked, the subgraph needs 

to be complemented by a 0 process to obtain the matrix ��"�, �#. The subgraph needs to be reconstructed, 

calculated as Eq. (12): 

 ��(�, �) = diag ' ��(�,�), ��(�, �), … , ��(�,�)( (12) 
 

In Eq. (12), the fabric sub image with suppressed energy information in the second background is 

reconstructed according to Eq. (13), as follows:
 

 �� ∣ �)* (�, �) = �(�, �)��(�, �)�(�, �)� (13) 
 

In Eq. (13), the left singularity matrix and the right singularity matrix of the (�, �) subgraph of the  

defective point image of the fabric are  �(�, �) and �(�, �), respectively. 

 

3.3 Application of Improved SVD for Fabric Stiffness Testing 

In this study, Haar wavelet threshold is utilized to remove noise. This method first sets the threshold 

parameter, which is set to be lower than the wavelet coefficients of the original signal. The image to be 

measured is decomposed by one or two layers of wavelet, and the threshold parameters are obtained by 

soft threshold function. Meanwhile, each layer needs to be processed by threshold. Then the ROI covering 

the defect points of the clothing fabric is determined, which can greatly reduce the amount of calculation 

and also reduce the calculation time. The schematic diagram of ROI area acquisition block diagram is 

shown in Fig. 2. When the segmentation coefficient takes different values, the number of segmented sub-

images is different, and the number of sub-images is determined by � and � of the original image. The 

image of the fabric to be taken for the study is 256 × 256 pixels. After segmentation, the image size of 
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the smallest sub-window is set to 2 × 2 pixels; The initial segmentation factor is set to 2. This average 

value is used as an assessment of the similarity between the fabric to be tested and the defect-free fabric 

image. Before testing the image, the study needs to train the images of the same texture in advance and 

set the maximum average value as the threshold parameter. 

 

 
Fig. 2. Schematic diagram of ROI area acquisition block diagram. 

 

The recognition of fabric defect images in this study is completed through SVD combined with ROI 

technology. After determining ROI in adaptive image segmentation, the texture background energy of 

the fabric is expelled and binary threshold processing is performed to determine the shape and position 

of the defect. 

 

 

4. Application of Improved SVD to Take Fabric Stiffness Test Results 

The fabric image samples used in this experiment were sourced from the industrial automation research 

laboratory of a chemical enterprise. The comparisons were for computational complexity, data redundancy, 

and detection results. Table 1 refers to flaw point detection results under different sub image sizes. 

Overall, the best detection results for taking fabric image defect points were obtained when the sub-image 

size was 32 × 32 pixels. In this case, not only the complete information of the reconstructed image was 

guaranteed, but also the calculation process and data redundancy in singular value calculation were 

reduced. 

 

Table 1. Flaw point detection results under different sub-image sizes 

Pixels 
Average recognition 

accuracy 

Number of original feature 

points in the image 

Preserve feature points 

after dimensionality 

reduction 

4 × 4 0.141 4 3 

8 × 8 0.317 57 35 

16 × 16 0.641 157 109 

32 × 32 0.796 371 370 

64 × 64 0.788 1,029 943 

 

The study set up different taking fabric types for fabric stiffness detection, namely point, star and 

lattice. The defective point types were classified as hemp fibre, wool, fine yarn, and roving. Four 

detection methods—modified SVD, K-singular value decomposition (K-SVD), empirical mode decom-
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position (EMD) and singular value decomposition (EMD-SVD), and low rank sparse matrix factorization 

(MF)—were set and compared. Fig. 3 shows the results of the different defective point detection methods 

for point-like fabrics. Fig. 3 refers to each of the four types. Compared to the other three methods, the 

method given in the study had an outstanding advantage in the detection of the four defective point types. 

The area under curve (AUC) for the improved SVD method was 0.778, 0.767, 0.753, and 0.772 for the 

four defect types of hemp, wool, fines, and roving, respectively. The method given in the study had an 

excellent detection accuracy in the detection of defective spots in fabrics. 

The test images used in this method were from an automation laboratory of a textile enterprise. Fig. 4 

shows some fabric defect images and corresponding defect detection results. It was not difficult to find 

that for a defect fabric image, the result of a small window operation was better than that of a larger 

window image. This was because for larger windows, defects with relatively small defect areas contained 

very few pixels, so their projection values were also small and difficult to distinguish from normal 

background textures. When operating on small windows, this impact can be reduced, but meanwhile, it 

would lead to an increase in false detection rate, which meant that the detection results were unstable, 

and compared to processing on larger windows, noise and system changes would cause more errors. 

In this study, fabric images with large and small windows in the laboratory were used as samples to 

detect and analyze the performance of different algorithms for fabric hardness detection. The specific 

experimental results are shown in Table 2. 

 

 
(a) (b) 

 
(c) (d) 

Fig. 3. Testing results of dotted fabrics by different flaw detection methods: (a) flax fibre, (b) wool, (c) 

spun yarn, and (d) roving. 
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Fig. 4. Fabric testing results. 

 

As shown in Table 2, the improved SVD algorithm proposed in this study had higher performance in 

detecting large and small window images of fabrics than the other two algorithms. In the case of hole-

shaped defects, the recognition accuracy of the SVD algorithm was 87.2% and 93.17%, respectively. The 

recognition accuracy of the SVD algorithm for linear defects was 71.54% and 80.44%, respectively. 

 

Table 2. Detection performance of non-algorithm in fabric images with large and small windows 

Algorithm 

Large window image Small window image 

Accuracy (%) 
Mean 

time to 

detect (s)

Accuracy (%) 
Mean 

time to 

detect (s) 

Hole-shaped 

defect 

detection 

Linear 

defect 

detection 

Hole-shaped 

defect 

detection 

Linear 

defect 

detection 

Improved SVD algorithm 87.20 71.54 0.54 93.17 80.44 0.31 

K-means 80.41 34.53 0.82 84.60 67.11 0.52 

Window skip morphological 

method 
76.34 27.59 0.41 81.36 48.63 0.11 

 

 

5. Conclusion 

To achieve real time and high accuracy in the stiffness detection method for wearing fabrics, a defect 

point detection technique applying improved SVD was constructed, which in turn reduced the 

computational complexity of the image processing by means of SVD. The best detection results for taking 

fabric images with defect points were obtained when the sub-image size was 32 pixels×32 pixels. For the 

four defect types of hemp fibre, wool, fine yarn, and roving, the AUC values of the four detection 

methods, improved SVD, K-SVD, EMD-SVD and MF, were lower compared to those of star and dotted 

fabrics. The corresponding AUC values for the improved SVD detection method were 0.778, 0.767, 0.753 

and 0.772, respectively. The stiffness detection method for wearing fabrics given in the study had a low 

complexity and good performance, which was of reference value in practical applications. The limitation 

of this study is incomplete information extraction, which can be optimized in the future. 
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