Acknowledgement
The authors would like to acknowledge the committee of the 3rd International Competition for Structural Health Monitoring (IC-SHM 2022) for organization and data sharing. This research was funded by the National Natural Science Foundation of China (52127813) and the Fundamental Research Funds for the Central Universities (2242023K5006).
References
- Bochkovskiy, A., Wang, C.-Y. and Liao, H.-Y.M. (2020), "YOLOv4: Optimal speed and accuracy of object detection", arXiv, 2004.10934. https://doi.org/10.48550/arXiv.2004.10934
- Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C. and Chateau, T. (2017), "Deep MANTA: A coarse-to-fine many-task network for joint 2D and 3D vehicle analysis from monocular image", Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1827-1836. https://doi.org/10.1109/CVPR.2017.198
- Clausse, A., Benslimane, S. and de La Fortelle, A. (2019), "Large-scale extraction of accurate vehicle trajectories for driving behavior learning", Proceedings of the 30th IEEE Intelligent Vehicles Symposium (IV19), pp. 2391-2396. https://doi.org/10.1109/IVS.2019.8814095
- Ge, Z., Liu, S., Wang, F., Li, Z. and Sun, J. (2021), "YOLOX: Exceeding YOLO series in 2021", arXiv, 2107.08430. https://doi.org/10.48550/arXiv.2107.08430
- Gevorgyan, Z. (2022), "SIoU loss: More powerful learning for bounding box regression".
- Girshick, R. (2015), "Fast R-CNN", Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1440-1448. https://doi.org/10.1109/ICCV.2015.169
- Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014), "Rich feature hierarchies for accurate object detection and semantic segmentation", Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580-587. https://doi.org/10.1109/CVPR.2014.81
- He, K.M., Zhang, X.Y., Ren, S.Q. and Sun, J. (2014), "Spatial pyramid pooling in deep convolutional networks for visual recognition", Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, September. https://doi.org/10.1007/978-3-319-10578-9_23
- Kong, W. and Hu, T. (2019), "A deep neural network method for detection and tracking ship for unmanned surface vehicle", Proceedings of 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), May. https://doi.org/10.1109/DDCLS.2019.8908899
- Lee, W.J., Roh, M.I., Lee, H.W., Ha, J., Cho, Y.M., Lee, S.J. and Son, N.S. (2021), "Detection and tracking for the awareness of surroundings of a ship based on deep learning", J. Comput. Des. Eng., 8(5), 1407-1430. https://doi.org/10.1093/jcde/qwab053
- Li, S.L., Guo, Y.P., Xu, Y. and Li, Z.L. (2019), "Real-time geometry identification of moving ships by computer vision techniques in bridge area", Smart. Struct. Syst., Int. J., 23(4), 359-371. https://doi.org/10.12989/sss.2019.23.4.359
- Li, G., Lei, Y., Si, L. and Zheng, C. (2021), "Self-supervised visual representation learning for fine-grained ship detection", Proceedings of 2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE), September. https://doi.org/10.1109/ICISCAE52414.2021.9590709
- Liu, S., Qi, L., Qin, H.F., Shi, J.P. and Jia, J.Y. (2018), "Path aggregation network for instance segmentation", Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8759-8768. https://doi.org/10.1109/CVPR.2018.00913
- Liu, J., Shi, G. and Zhu, K. (2019), "Vessel trajectory prediction model based on AIS sensor data and adaptive chaos differential evolution support vector regression (ACDE-SVR)", Appl. Sci., 9(15), 2983. https://doi.org/10.3390/app9152983
- Mahaur, B. and Mishra, K.K. (2023), "Small-object detection based on YOLOv5 in autonomous driving systems", Pattern Recogn. Lett., 168, 115-122. https://doi.org/10.1016/j.patrec.2023.03.009
- Omrani, E., Mousazadeh, H., Omid, M., Masouleh, M.T., Jafarbiglu, H., Salmani-Zakaria, Y., Makhsoos, A., Monhaseri, F. and Kiape, A. (2020), "Dynamic and static object detection and tracking in an autonomous surface vehicle", Ships Offshore Struct., 15(7), 711-721. https://doi.org/10.1080/17445302.2019.1668642
- Raj, J.A., Idicula, S.M. and Paul, B. (2022), "Lightweight SAR Ship detection and 16 Class Classification using Novel Deep Learning Algorithm with a Hybrid Preprocessing Technique", Int. J. Remote Sens., 43(15-16), 5820-5847. https://doi.org/10.1080/01431161.2021.2008544
- Redmon, J. and Farhadi, A. (2017), "YOLO9000: Better, Faster, Stronger", Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July. https://doi.org/10.1109/CVPR.2017.690
- Redmon, J. and Farhadi, A. (2018), "YOLOv3: An incremental improvement", arXiv, 1804.02767. https://doi.org/10.48550/arXiv.1804.02767
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), "You Only Look Once: Unified, Real-Time Object Detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.91
- Ren, S.Q., He, K.M., Girshick, R. and Sun, J. (2017), "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", IEEE Trans. Pattern Anal. Mach. Intell., 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I. and Savarese, S. (2019), "Generalized intersection over union: A metric and a loss for bounding box regression", Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June. https://doi.org/10.1109/CVPR.2019.00075
- Savitzky, A. and Golay, M.J.E. (1964), "Smoothing + differentiation of data by simplified least squares procedures", Anal. Chem., 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
- Szpak, Z.L. and Tapamo, J.R. (2011), "Maritime surveillance: Tracking ships inside a dynamic background using a fast level-set", Expert Syst. Appl., 38(6), 6669-6680. https://doi.org/doi.org/10.1016/j.eswa.2010.11.068
- Tang, W., Mondal, T.G., Wu, R.T., Subedi, A. and Jahanshahi, M.R. (2023), "Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning", Smart. Struct. Syst., Int. J., 31(4), 365-381. https://doi.org/10.12989/sss.2023.31.4.365
- The 3rd International Competition for Structural Health Monitoring (IC-SHM 2022). https://shmc.tongji.edu.cn/ICSHM2022/main.htm
- Thombre, S., Zhao, Z., Ramm-Schmidt, H., Garcia, J.M.V., Malkamaki, T., Nikolskiy, S., Hammarberg, T., Nuortie, H., Bhuiyan, M.Z.H., Sarkka, S. and Lehtola, V.V. (2022), "Sensors and AI techniques for situational awareness in autonomous ships: a review", IEEE Trans. Intell. Transp. Syst., 23(1), 64-83. https://doi.org/10.1109/TITS.2020.3023957
- Tong, Z., Chen, Y., Xu, Z. and Yu, R. (2023), "Wise-IoU: bounding box regression loss with dynamic focusing mechanism", arXiv preprint arXiv:2301.10051.
- Ultralytics (2020), YOLOv5: Open source neural networks in Python, accessed 9 June 2020. https://github.com/ultralytics/yolov5/
- Valsamis, A., Tserpes, K., Zissis, D., Anagnostopoulos, D. and Varvarigou, T. (2017), "Employing traditional machine learning algorithms for big data streams analysis: The case of object trajectory prediction", J. Syst. Softw., 127, 249-257. https://doi.org/10.1016/j.jss.2016.06.016
- Yang, L., Zhang, R.-Y., Li, L. and Xie, X. (2021), "SimAM: A simple, parameter-free attention module for convolutional neural networks", Proceedings of the 38th International Conference on Machine Learning, 139, 11863-11874.
- Yoon, H., Shin, J. and Spencer Jr., B.F. (2018), "Structural displacement measurement using an unmanned aerial system", 33(3), 183-192. https://doi.org/10.1111/mice.12338
- Zhang, B. and Zhang, J. (2021), "A traffic surveillance system for obtaining comprehensive information of the passing vehicles based on instance segmentation", IEEE Trans. Intell. Transp. Syst., 22(11), 7040-7055. https://doi.org/10.1109/TITS.2020.3001154
- Zhang, T., Jiang, L., Xiang, D., Ban, Y., Pei, L. and Xiong, H. (2019), "Ship detection from PolSAR imagery using the ambiguity removal polarimetric notch filter", ISPRS J. Photogramm. Remote Sens., 157, 41-58. https://doi.org/10.1016/j.isprsjprs.2019.08.009
- Zhang, B., Xu, Z., Zhang, J. and Wu, G. (2022a), "A warning framework for avoiding vessel-bridge and vessel-vessel collisions based on generative adversarial and dual-task networks", Comput.-Aided Civil Infrastr. Eng., 37(5), 629-649. https://doi.org/doi.org/10.1111/mice.12757
- Zhang, Y.F., Ren, W.Q., Zhang, Z., Jia, Z., Wang, L. and Tan, T.N. (2022b), "Focal and efficient IOU loss for accurate bounding box regression", Neurocomputing, 506, 146-157. https://doi.org/10.1016/j.neucom.2022.07.042
- Zheng, Z.H., Wang, P., Liu, W., Li, J.Z., Ye, R.G. and Ren, D.W. (2020), "Distance-IoU loss: faster and better learning for bounding box regression", Proceedings of the AAAI Conference on Artificial Intelligence, 34(07), 12993-13000. https://doi.org/10.1609/aaai.v34i07.6999