DOI QR코드

DOI QR Code

Finite element analysis of the crack emanating to cavity in the bone cement of the hip prosthesis

  • Benouis Ali (Faculty of Technology, University of Dr Moulay Tahar) ;
  • Zagane Mohammed El Sallah (Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes) ;
  • Moulgada Abdelmadjid (Department of Mechanical Engineering, Laboratory Mechanics Physics of Materials (LMPM), University of Sidi Bel Abbes) ;
  • Ait Kaci Djafar (Department of Mechanical Engineering, University of Ibn Khaldoun) ;
  • Zahi Rachid (Department of Mechanical Engineering, University of Relizane) ;
  • Cherfi Mohamed (Department of Mechanical Engineering, University of Ibn Khaldoun)
  • Received : 2024.01.21
  • Accepted : 2024.10.28
  • Published : 2024.11.10

Abstract

The analysis of elliptical cracks emanating from cavities in polymethyl-methacrylate (PMMA) surgical cement is crucial for understanding loosening in total hip prostheses, as cement failure is a primary cause of this issue. Understanding fracture mechanismsis vital for improving the durability of cemented prostheses. Predicting crack propagation paths can help identify high-risk areas using medical imaging. This study focuses on the behavior of cracks emanating from cavities within the orthopedic cement, using a realistic model. The crack behavior is analyzed in terms of the evolution of stress intensity factors (SIFs) in Modes I, II, and III, applying the maximum tangential stress criterion. The fracture analysis considers the crack size relative to the cavity, its orientation, and its location in the orthopedic cement. The finite element method specifically examines elliptical cracks along the cement, focusing on the effect of the distance between cracks emanating from cavities and nearby defects on SIFs. The orientation of these cracks significantly influences SIF magnitudes and modes, affecting the direction and stability of crack propagation. The study reveals that the proximal lateral part experiences the highest stresses, with a notable increase in SIFs in Modes I and II, particularly where crack interaction occurs. The proximal medial part follows, while the distal part is predominantly subjected to compressive stresses.

Keywords

References

  1. ABAQUS/Standard Version 6.17 (2017), Analysis User's Manual, Dassault Systemes Simulia Corporation, Providence, RI, Hibbitt, Karlsson, Sorensen, Abaqus 6.17 Manual.
  2. Abderahmane, S., Djafar, A.K., Rachid, Z., Abdelmadjid, M. and Smail, B. (2019), "Numerical simulation of a crack emanating from a micro-cavity in the orthopedic cement by technical sub modeling of total hip prosthesis", Frattura ed Integrita Strutturale, 13(49), 586-598. https://doi.org/10.3221/IGFESIS.49.54
  3. Ali, B., Abdelkader, B., Noureddine, B. and Boualem, S. (2015), "Numerical analysis of crack propagation in cement PMMA: Application of SED approach", Struct. Eng. Mech., 55(1), 93-109. https://doi.org/10.12989/sem.2015.55.1.093.
  4. Bergmann, G., Deuretzbacher, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J. and Duda, G.N. (2001), "Hip contact forces and gait patterns from routine activities", J. Biomech., 34(7), 859-871. https://doi.org/10.1016/S0021-9290(01)00040-9.
  5. Bergmann, G., Graichen, F. and Rohlmann, A. (1993), "Hip joint loading during walking and running, measured in two patients", J. Biomech., 26(8), 969-990. https://doi.org/10.1016/0021-9290(93)90058-M.
  6. Brand, R.A., Mont, M.A. and Manring, M.M. (2011), "Biographical sketch: Themistocles gluck (1853-1942)", Clinic. Orthopaed. Relat. Res., 469, 1525-1527. https://doi.org/10.1007/s11999-011-1837-7.
  7. Celik, E., Alemdar, F., Bati, M., Dasdemir, M.F., Buyukbayraktar, O.A., Chethan, K.N. and Mihcin, S. (2022), "Mechanical investigation for the use of polylactic acid in total hip arthroplasty using FEM analysis", Biomechanics in Medicine, Sport and Biology, Springer International Publishing.
  8. Charnley, J. (1960), "Anchorage of the femoral head prosthesis to the shaft of the femur", J. Bone Joint Surgery, 42(1), 28-30. https://doi.org/10.1302/0301-620X.42B1.28.
  9. Chethan, K.N., Shyamasunder Bhat, N., Zuber, M. and Shenoy, B.S. (2022), "Evolution of different designs and wear studies in total hip prosthesis using finite element analysis: A review", Cogent Eng., 9(1), 2027081. https://doi.org/10.1080/23311916.2022.2027081.
  10. Choi, K., Kuhn, J.L., Ciarelli, M.J. and Goldstein, S.A. (1990), "The elastic moduli of humansubchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus", J. Biomech., 23, 1103-1113. https://doi.org/10.1016/0021-9290(90)90003-L
  11. Corda, J.V., Chethan, K.N., Shenoy, S., Shetty, S. and Zuber, M. (2023), "Fatigue life evaluation of different hip implant designs using finite element analysis", J. Appl. Eng. Sci., 21(3), 896-907. https://doi.org/10.5937/jaes0-44094.
  12. Corda, J.V., Chethan, K.N., Shetty, S., Shenoy, S. and Zuber, M. (2023), "Finite element analysis of elliptical shaped stem profile of hip prosthesis using dynamic loading conditions", Biomed. Phys. Eng. Expr., 9(6), 065028. https://doi.org/10.1088/2057-1976/acfe14.
  13. Culleton, P., Prendergast, P.J. and Taylor, D. (1993), "Fatigue failure in the cement mantle of an artificial hip joint", Clinic. Mater., 12(2), 1295-102. https://doi.org/10.1016/0267-6605(93)90056-D.
  14. Dunne, N., Tzagiollari, A., Sahebalzamani, M. and Dunne, T.J. (2021), "Acrylic cements for bone fixation in joint replacement", Joint Replacement Technology, 213-262. https://doi.org/10.1016/B978-0-12-821082-6.00021-2.
  15. Dunne, N.J. and Orr, J.F. (2001), "Influence of mixing techniques on the physical properties of acrylic bone cement", Biomater., 22(13), 1819-1826. https://doi.org/10.1016/S0142-9612(00)00363-X.
  16. El Sallah Zagane, M., Moulgada, A., Yaylaci, M., Abderahmen, S., O zdemir, M. and Yaylaci, E.C.R.E.N. (2023), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.
  17. El Sallah, Z.M., Ali, B. and Abderahmen, S. (2020), "Effect of force during stumbling of the femur fracture with a different cemented total hip prosthesis", Biomater. Biomech. Bioeng., 5(1), 11-23. https://doi.org/10.12989/bme.2020.5.1.011.
  18. El Sallah, Z.M., Ali, B., Abderahmen, S. and Serier, B. (2017), "Numerical simulation of the femur fracture with and without prosthesis under static loading using extended finite element method (X-FEM)", J. Mech. Eng., 14(1), 97-112.
  19. El Sallah, Z.M., Smail, B., Abderahmane, S., Bouiadjra, B.B. and Boualem, S. (2016), "Numerical simulation of the femur fracture under static loading", Struct. Eng. Mech., 60(3), 405-412. https://doi.org/10.12989/sem.2016.60.3.405.
  20. Gearing, B.P. and Anand, L. (2004), "On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing", Int. J. Solid. Struct., 41(11), 3125-3150. https://doi.org/10.1016/j.ijsolstr.2004.01.017.
  21. Goktas, H., Subasi, E., Uzkut, M., Kara, M., Bicici, H., Shirazi, H., ... & Mihcin, S. (2022). "Optimization of hip implant designs based on its mechanical behaviour", Biomechanics in Medicine, Sport and Biology, Springer International Publishing.
  22. Graham, J., Pruitt, L., Ries, M. and Gundiah, N. (2000), "Fracture and fatigue properties of acrylic bone cement: The effects of mixing method, sterilization treatment, and molecular weight", J. Arthroplast., 15(8), 1028-1035. https://doi.org/10.1054/arth.2000.8188.
  23. Gutmann, C., Shaikh, N., Shenoy, B.S., Bhat, N.S., Keni, L.G. and Chethan, K.N. (2023), "Wear estimation of hip implants with varying chamfer geometry at the trunnion junction: A finite element analysis", Biomed. Phys. Eng. Expr., 9(3), 035004. https://doi.org/10.1088/2057-1976/acb710.
  24. Hidayat, T., Ammarullah, M.I., Ismail, R., Saputra, E., Lamura, M.D.P., Chethan, K.N., ... & Jamari, J. (2024). "Investigation of contact behavior on a model of the dual-mobility artificial hip joint for Asians in different inner liner thicknesses", World J. Orthoped., 15(4), 321. https://doi.org/10.5312/wjo.v15.i4.321.
  25. Hidayat, T., Ammarullah, M.I., Saputra, E., Lamura, M., KN, C., Ismail, R., ... & Jamari, J. (2024), "A method for estimating the contact area of a dual-mobility total hip prosthesis", AIP Adv., 14(1), 015317. https://doi.org/10.1063/5.0188638.
  26. Isa, M.I.M., Shuib, S., Romli, A.Z., Shokri, A.A., Arrif, I.M. and Hamizan, N.S. (2021), "Finite Element Analysis (FEA) of the different cement mixture for total hip replacement", 2021 IEEE National Biomedical Engineering Conference (NBEC), November.
  27. Lewis, G. (1999), "Apparent fracture toughness of acrylic bone cement: Effect of test specimen configuration and sterilization method", Biomater., 20(1), 69-78. https://doi.org/10.1016/S0142-9612 (98)00145-8.
  28. Lewis, G. and Mladsi, S. (1998), "Effect of sterilization method on properties of Palacos® R acrylic bone cement", Biomater., 19(1-3), 117-124. https://doi.org/10.1016/S0142-9612 (97)00165-8.
  29. Maloney, W.J., Jasty, M., Burke, D.W., O'Connor, D.O., Zalenski, E.B., Bragdon, C. and Harris, W.H. (1989), "Biomechanical and histologic investigation of cemented total hip arthroplasties. A study of autopsy-retrieved femurs after in vivo cycling", Clinic. Orthopaed. Relat. Res., 249, 249129-140.
  30. McCormack, B.A.O., Prendergast, P.J. and Gallagher, D.G. (1996), "An experimental study of damage accumulation in cemented hip prostheses", Clinic. Biomech., 11(4), 214-219. https://doi.org/10.1016/0268-0033(95)00076-3.
  31. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  32. Mohamed, C., Smail, B., Bouiadjra, B. and Serier, B. (2016), "Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA", Struct. Eng. Mech., 57(4), 717-731. https://doi.org/10.12989/sem.2016.57.4.717.
  33. Moulgada, A., Zagane, M.E.S., Yaylaci, M., Djafar, A.K., Abderahmane, S., O zturk, S. and Yaylaci, E.U. (2023), "Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period", Struct. Eng. Mech., 87(6), 575-583. https://doi.org/10.12989/sem.2023.87.6.575.
  34. Reginald, J., Kalayarasan, M., Chethan, K.N. and Dhanabal, P. (2023), "Static, dynamic, and fatigue life investigation of a hip prosthesis for walking gait using finite element analysis", Int. J. Model. Simul., 43(5), 797-811. https://doi.org/10.1080/02286203.2023.2212346.
  35. Shaikh, N., Shenoy, B.S., Bhat, N.S., Shetty, S. and Chethan, K.N. (2023), "Wear estimation at the contact surfaces of oval shaped hip implants using finite element analysis", Cogent Eng., 10(1), 2222985. https://doi.org/10.1080/23311916.2023.2222985.
  36. Spece, H., Ouellette, E.S., Jones, O.L., MacDonald, D.W., Piuzzi, N.S., Lee, G.C., ... & Kurtz, S.M. (2021), "Fretting corrosion, third-body polyethylene damage, and cup positioning in primary vs revision dual mobility total hip arthroplasty", J. Arthroplast., 36(7), S80-S87. https://doi.org/10.1016/j.arth.2021.01.035.
  37. Topoleski, L.D.T., Ducheyne, P. and Cuckler, J.M. (1993), "Microstructural pathway of fracture in poly (methyl methacrylate) bone cement", Biomater., 14(15), 1165-1172. https://doi.org/10.1016/0142-9612(93)90162-U.
  38. Topoleski, L.T., Ducheyne, P. and Cukler, J.M. (1990), "A fractographic analysis of in vivo poly (methyl methacrylate) bone cement failure mechanisms", J. Biomed. Mater. Res., 24(2), 135-154. https://doi.org/10.1002/jbm.820240202.
  39. Zagane, M.E.S., Abdelmadjid, M., Yaylaci, M., Abderahmen, S. and Yaylaci, E.U. (2023), "Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)", Struct. Eng. Mech., 88(6), 583-588. https://doi.org/10.12989/sem.2023.88.6.583.
  40. Zhang, L., Liu, H., Chen, T. and Yuan, F. (2023), "Initial damage analysis in bone cement-stem debonding procession of cemented hip arthropsty", Mater. Des., 225, 111486. https://doi.org/10.1016/j.matdes.2022.111486.
  41. Zhang, L., Liu, H., Yuan, F., Chen, T., Xu, L. and Wang, J. (2023), "Failure characteristics analysis of total cemented hip repalcement", Arch. Clinic. Psychiat., 50(6), 10. https://doi.org/10.15761/0101-60830000000702.