DOI QR코드

DOI QR Code

Thermal Transport Properties of a Mixed Anion Layered Compound, Polycrystalline LaCu1-δS0.5Se0.5O (δ = 0 .0 1)

  • Nobuhiko Azuma (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Hiroki Sawada (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Hirotaka Ito (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Ryosuke Sakagami (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Yuya Tanaka (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Tatsuhide Fujioka (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Masanori Matoba (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University) ;
  • Yoichi Kamihara (Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University)
  • Received : 2024.08.29
  • Accepted : 2024.09.25
  • Published : 2024.10.27

Abstract

Electrical and thermal transport properties of a polycrystalline carrier-doped wide-gap semiconductor LaCu1-δS0.5Se0.5O (δ = 0.01), in which the CuCh (Ch = S, Se) layer works as conducting layer, were measured at temperatures 473~673 K. The presence of δ = 0.01 copper defects dramatically reduces the electrical resistivity (ρ) to approximately one part per million compared to that of δ = 0 at room temperature. The polycrystalline δ = 0.01 sample exhibited ρ of 1.3 × 10-3 Ωm, thermal conductivity of 6.0 Wm-1 K-1, and Seebeck coefficient (S) of 87 µVK-1 at 673 K. The maximum value of the dimensionless figure of merit (ZT) of the δ = 0.01 sample was calculated to be 6.4 × 10-4 at T = 673 K. The ZT value is far smaller than a ZT ~ 0.01 measured for a nominal LaCuSeO sample. The smaller ZT is mainly due to the small S measured for LaCu1-δS0.5Se0.5O (δ = 0.01). According to the Debye model, above 300 K phonon thermal conductivity in a pure lattice is inversely proportional to T, while thermal conductivity of the δ = 0.01 sample increases with increasing T.

Keywords

Acknowledgement

This work was partially supported by the research grants from Keio University, the Keio Leading-edge Laboratory of Science and Technology (KLL).

References

  1. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, p.40, Infosearch Limited, London (1957).
  2. Y. Goto, Ph. D. Thesis (in Japanese), p.9, Keio University, Yokohama (2015).
  3. H. J. Goldsmid and R. W. Douglas, Br. J. Appl. Phys., 5, 386 (1954).
  4. H. J. Goldsmid and R. T. Delves, GEC J., 28, 102 (1961).
  5. S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder and S. W. Kim, Science, 348, 109 (2015).
  6. B. Zhu, X. Liu, Q. Wang, Y. Qiu, Z. Shu, Z. Guo, Y. Tong, J. Cui, M. Gu and J. He, Energy Environ. Sci., 13, 2106 (2020).
  7. W. M. Yim, E. V. Fitzke and F. D. Rosi, J. Mater. Sci., 1, 52 (1966).
  8. K. Imasato, S. D. Kang and G. J. Snyder, Energy Environ. Sci., 12, 965 (2019).
  9. Z. Liu, W. Gao, H. Oshima, K. Nagase, C. H. Lee and T. Mori, Nat. Commun., 13, 1120 (2022).
  10. W. J. Zhu, Y. Z. Huang, C. Dong and Z. X. Zhao, Mater. Res. Bull., 29, 143 (1994).
  11. K. Ueda and H. Hosono, Thin Solid Films, 411, 115 (2002).
  12. H. Hosono and M. Hirano, Developments and Applications of Transparent Oxides as Active Electronic Materials, p.71, CMC Publishing, Tokyo, Japan (2006).
  13. N. Zhang, J. Sun and H. Gong, Coatings, 9, 137 (2019).
  14. N. Zhang, D. Shi, X. Liu, A. Annadi, B. Tang, T. J. Huang and H. Gong, Appl. Mater. Today, 13, 15 (2018).
  15. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, T. Kamiya and H. Hosono, Appl. Phys. Lett., 82, 1048 (2003).
  16. Y. Goto, M. Tanaki, Y. Okusa, T. Shibuya, K. Yasuoka, M. Matoba and Y. Kamihara, Appl. Phys. Lett., 105, 022104 (2014).
  17. H. Hiramatsu, T. Kamiya, T. Tohei, E. Ikenaga, T. Mizoguchi, Y. Ikuhara, K. Kobayashi and H. Hosono, J. Am. Chem. Soc., 132, 15060 (2010).
  18. L. D. Zhao, D. Berardan, Y. L. Pei, C. Byl, L. Pinsard-Gaudart and N. Dragoe, Appl. Phys. Lett., 97, 092118 (2010).
  19. Y. Liu, L. D. Zhao, Y. Zhu, Y. Liu, F. Li, M. Yu, D. B. Liu, W. Xu, Y. H. Lin and C. W. Nan, Adv. Energy Mater., 6, 1502423 (2016).
  20. W. Tang, W. Qian, S. Jia, K. Li, Z. Zhou, J. Lan, Y.-H. Lin and X. Yang, Mater. Today Phys., 35, 101104 (2023).
  21. N. Wang, M. Li, H. Xiao, X. Zu and L. Qiao, Phys. Rev. Appl., 13, 024038 (2020).
  22. K. Ishikawa, S. Kinoshita, Y. Suzuki, S. Matsuura, T. Nakanishi, M. Aizawa and Y. Suzuki, J. Electrochem. Soc., 138, 1166 (1991).
  23. M. Yasukawa, K. Ueda and H. Hosono, J. Appl. Phys., 95, 3594 (2004).
  24. G. H. Jonker, Philips Res. Rep., 23, 131 (1968).
  25. T. Kato, Y. Kamihara, K. Kihou and C. H. Lee, Mater. Sci. Technol. Jpn., 55, 67 (2018).
  26. J. Li, J. Han, T. Jian, L. Luo and Y. Xiang, J. Electron. Mater., 47, 4579 (2018).
  27. T. Kato, Master Thesis (in Japanese), p.50, Keio University, Yokohama (2018).
  28. N. Azuma, T. Sawada, H. Itoh, R. Sakagami, M. Matoba, H. Usui and Y. Kamihara, Mater. Sci. Technol. Jpn., 58, 64 (2021).
  29. N. Azuma, Master Thesis (in Japanese), p.80, Keio University, Yokohama (2020).
  30. R. Sakagami, Y. Goto, H. Karimata, N. Azuma, M. Yamaguchi, S. Iwasaki, M. Nakanishi, I. Kitawaki, Y. Mizuguchi, M. Matoba and Y. Kamihara, Jpn. J. Appl. Phys., 60, 035511 (2021).
  31. K. Ueda and H. Hosono, J. Appl. Phys., 91, 4768 (2002).
  32. R. Sakagami, Ph. D. Thesis, p.32, Keio University, Yokohama (2021).
  33. J. R. Howell, M. P. Menguc and R. Siegel, Thermal Radiation Heat Transfer, 6th ed., p.214, CRC Press, Boca Raton (2016).
  34. J. B. J. Fourier, The Analytical Theory of Heat, translated by A. Freeman, p. 51-52, Cambridge University Press, Cambridge (2009).
  35. D. G. Cahill, S. K. Watson and R. O. Pohl, Phys. Rev. B, 46, 6131 (1992).
  36. K. A. Borup, J. de Boor, H. Wang, F. Drymiotis, F. Gascoin, X. Shi, L. Chen, M. I. Fedorov, E. Muller, B. B. Iversen and G. J. Snyder, Energy Environ. Sci., 8, 423 (2015).
  37. H. Wang, M. I. Fedorov, A. A. Shabaldin, P. P. Konstantinov and G. J. Snyder, J. Electron. Mater., 44, 1967 (2015).
  38. H. Wang, W. Porter, H. Bottner, J. Konig, L. Chen, S. Bai, T. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke and L. Kiss, J. Electron. Mater., 42, 1073 (2013).
  39. J. Francl and W. D. Kingery, J. Am. Ceram. Soc., 37, 99 (1954).
  40. E. S. Toberer, A. Zevalkink and G. J. Snyder, J. Mater. Chem., 21, 15843 (2011).
  41. R. Franz and G. Wiedemann, Ann. Phys. (Berlin, Ger.), 165, 497 (1853).
  42. L. Lorenz, Ann. Phys. (Berlin, Ger.), 223, 429 (1872).
  43. H.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang and G. J. Snyder, APL Mater., 3, 041506 (2015).
  44. J. B. Mandal, A. N. Das and B. Ghosh, J. Phys.: Condens. Matter, 8, 3047 (1996).
  45. J.-L. Lan, B. Zhan, Y.-C. Liu, B.-Z. Zheng, Y. Liu, Y.-H. Lin and C.-W. Nan, Appl. Phys. Lett., 102, 123905 (2013).
  46. H. Hiramatsu, I. Koizumi, K.-B. Kim, H. Yanagi, T. Kamiya, M. Hirano, N. Matsunami and H. Hosono, J. Appl. Phys., 104, 113723 (2008).
  47. H. Hiramatsu, K. Ueda, H. Ohta, M. Hirano, M. Kikuchi, H. Yanagi, T. Kamiya and H. Hosono, Appl. Phys. Lett., 91, 012104 (2007).
  48. S. Okada, I. Terasaki, H. Ooyama and M. Matoba, J. Appl. Phys., 95, 6816 (2004).
  49. J. M. Ziman, Electrons and Phonons, pp. 288-333, Oxford University Press, Oxford, UK (1960).
  50. Y.-H. Zhao, Z.-H. Shan, W. Zhou, R. Zhang, J. Pei, H.-Z. Li, J.-F. Li, Z.-H. Ge, Y.-B. Wang and B.-P. Zhang, ACS Appl. Energy Mater., 5, 5076 (2022).
  51. H. Tang, F.-H. Sun, J.-F. Dong, Asfandiyar, H.-L. Zhuang, Y. Pan and J.-F. Li, Nano Energy, 49, 267 (2018).
  52. R. Zhang, J. Pei, Z.-J. Han, Y. Wu, Z. Zhao and B.-P. Zhang, J. Adv. Ceram., 9, 535 (2020).
  53. K. Zhao, P. Qiu, Q. Song, A. B. Blichfeld, E. Eikeland, D. Ren, B. Ge, B. B. Iversen, X. Shi and L. Chen, Mater. Today Phys., 1, 14 (2017).
  54. Y. Wang, W.-D. Liu, H. Gao, L.-J. Wang, M. Li, X.-L. Shi, M. Hong, H. Wang, J. Zou and Z.-G. Chen, ACS Appl. Mater. Interfaces, 11, 31237 (2019).
  55. H. Zhao, P. Zhao, B. Wang, D. Wang, A. Song, C. Chen, T. Shen, F. Yu, D. Yu, B. Xu and Y. Tian, Mater. Today Phys., 43, 101410 (2024).
  56. X. Yan, B. Poudel, Y. Ma, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen and Z. F. Ren, Nano Lett., 10, 3373 (2010).