Acknowledgement
이 연구는 한국지질자원연구원 자체사업인 "AI 기반 핵심광물 탐사 및 실증 예비 연구(24-7501)"의 지원을 받아 수행되었습니다. 유익한 조언을 해주신 익명의 두 심사자께 감사드립니다.
References
- Abba, S.I., Usman, J., Abdulazeez, I., Yogarathinam, L.T., Usman, A.G., Lawal, D., Salhi, B., Baig, N. and Aljundi, I.H. (2024). Enhancing Li+ recovery in brine mining: integrating next-gen emotional AI and explainable ML to predict adsorption energy in crown ether-based hierarchical nanomaterials. RSC Advances, v.14, p.15129-15142. https://doi.org/10.1039/D4RA02385D
- Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P. and Halverson, G.P. (2016) Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives. Chemical Geology, v.429, p.93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010
- Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y. and Chen, H. (2021) Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, v.289, p.125834. https://doi.org/10.1016/j.jclepro.2021.125834
- Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., AlGhamdi, A.S. and Alshamrani, S.S. (2022) Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Reports, v.8, p.334-361. https://doi.org/10.1016/j.egyr.2021.11.256
- Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R.K., Sharma, S., Tripathi, D.K., Dubey, N.K. and Chauhan, D.K. (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science, v.4. https://doi.org/10.3389/fenvs.2016.00069
- Arndt, N. (2013) The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits. Economic Geology v.108, p.1953-1970. https://doi.org/10.2113/econgeo.108.8.1953
- Balaram, V. (2022) Rare earth element deposits: Sources, and exploration strategies. Journal of the Geological Society of India, v.98, p. 1210-1216. https://doi.org/10.1007/s12594-022-2154-3
- Barefoot, R.R. and Van Loon, J.C. (1999) Recent advances in the determination of the platinum group elements and gold. Talanta, v.49, p.1-14. https://doi.org/10.1016/S0039-9140(98)00347-6
- Barker, J.F. and Fritz, P. (1981) Carbon isotope fractionation during microbial methane oxidation. Nature, v.293, p.289-291. https://doi.org/10.1038/293289a0
- Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H. and Aguilar, C. (1999) Iron isotope biosignatures. Science, v.285, p.1889-1892. https://doi.org/10.1126/science.285.5435.1889
- Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, v.76, p.45-69. https://doi.org/10.1016/S0375-6742(02)00204-2
- Bennett, S.A., Rouxel, O., Schmidt, K., Garbe-Schonberg, D., Statham, P.J. and German, C.R. (2009) Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, v. 73, p. 5619-5634. https://doi.org/10.1016/j.gca.2009.06.027
- Berberich, G.M. and Berberich, M.B. (2022) Comparison of geogases in two cenozoic sedimentary basins. Geosciences, v.12, p.388. https://doi.org/10.3390/geosciences12100388
- Bishop, B.A. and Robbins, L.J. (2024) Using machine learning to identify indicators of rare earth element enrichment in sedimentary strata with applications for metal prospectivity. Journal of Geochemical Exploration, v.258, p.107388. https://doi.org/10.1016/j.gexplo.2024.107388
- Borse, J.H., Patil, D.D., Kumar, V. and Kumar, S. (2022) Soft landing parameter measurements for candidate navigation trajectories using deep learning and AI-enabled planetary descent. mathematical problems in engineering, v.2022, p.2886312. https://doi.org/10.1155/2022/2886312
- Bowell, R.J., Lagos, L., de los Hoyos, C.R. and Declercq, J. (2020) Classification and characteristics of natural lithium resources. Elements, v.16, p.259-264. https://doi.org/10.2138/gselements.16.4.259
- Breiter, K., Hlozkova, M., Korbelova, Z. and Galiova, M.V. (2019) Diversity of lithium mica compositions in mineralized granite-greisen system: Cinovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, v.106, p.12-27. https://doi.org/10.1016/j.oregeorev.2019.01.013
- Busche, F.D. (1989) Using plants as an exploration tool for gold. Journal of Geochemical Exploration, v.32, p.199-209. https://doi.org/10.1016/0375-6742(89)90056-3
- Cao, J., Hu, R., Liang, Z. and Peng, Z. (2009) TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. Journal of Geochemical Exploration, v.101, p.247-253. https://doi.org/10.1016/j.gexplo.2008.09.001
- Cao, J.J., Hu, X.Y., Jiang, Z.T., Li, H.W. and Zou, X.Z. (2010) Simulation of adsorption of gold nanoparticles carried by gas ascending from the Earth's interior in alluvial cover of the middle-lower reaches of the Yangtze River. Geofluids, v.10, p.438-446. https://doi.org/10.1111/j.1468-8123.2010.00287.x
- Carrillo-Gonzalez, R., Simunek, J., Sauve, S. and Adriano, D. (2006) Mechanisms and pathways of trace element mobility in soils. In: Advances in Agronomy. Academic Press, pp.111-178. https://doi.org/10.1016/S0065-2113(06)91003-7
- Casquet, C., Galindo, C., Tornos, F., Velasco, F. and Canales, A. (2001) The Aguablanca Cu-Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S). Ore Geology Reviews, v.18, p.237-250. https://doi.org/10.1016/S0169-1368(01)00033-6
- Cerny, P. (1991) Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits. Geoscience Canada, v.18, p.49-67. https://id.erudit.org/iderudit/geocan18_2art01
- Chambers, L.A. and Trudinger P.A. (1979) Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiology Journal, v.1, p.249-293. https://doi.org/10.1080/01490457909377735
- Chen, S.H., Jakeman, A.J. and Norton, J.P. (2008) Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, v.78, p.379-400. https://doi.org/10.1016/j.matcom.2008.01.028
- Chen, X., Liu, Y., Jiang, Y. and Feng, S. (2023) Radon transport carried by geogas: prediction model. Environmental Science and Pollution Research, v.30, p.86656-86675. https://doi.org/10.1007/s11356-023-28616-4
- Ciotoli, G., Lombardi, S. and Annunziatellis, A. (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. Journal of Geophysical Research: Solid Earth, v.112, p.B05407. https://doi.org/10.1029/2005JB004044
- Cohen, D.R. and Bowell, R.J. (2014) 13.24 - Exploration Geochemistry, in Holland, H.D. and Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Oxford, Elsevier, p.623-650. https://doi.org/10.1016/B978-0-08-095975-7.01127-X
- Cohen, D.R., Kelley, D.L., Anand, R. and Coker, W.B. (2010) Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, v.10, p.3-16. https://doi.org/10.1144/1467-7873/09-215
- Darnley, A.G. (1990) International geochemical mapping: a new global project. Journal of Geochemical Exploration, v.39, p.1-13. https://doi.org/10.1016/0375-6742(90)90066-J
- Di, S., Dai, S., Nechaev, V.P., French, D., Graham, I.T., Zhao, L., Finkelman, R.B., Wang, H., Zhang, S. and Hou, Y. (2023) Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine, Shanxi Province, China: derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, v.273, p.104262. https://doi.org/10.1016/j.coal.2023.104262
- Dikshit, A., Pradhan, B. and Alamri, A.M. (2021) Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Research, v.100, p.290-301. https://doi.org/10.1016/j.gr.2020.08.007
- Eckstrand, O.R. and Hulbert, L.J. (2007) Magmatic nickel-copper-platinum group element deposits. Geological Association of Canada, Mineral Deposits Division, Special Publication, v.5, p.205-222.
- Feng, D., Aldrich, C. and Tan, H. (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering v.13, p.623-642. https://doi.org/10.1016/S0892-6875(00)00045-5
- Fernandez, J., Fernandez, S., Diez, E., Pinilla-Alonso, N., Perez, S., Iglesias, S., Buendia, A., Rodriguez, J. and de Cos, J. (2024) Lunar Lithium-7 Sensing (δ7 Li): Spectral Patterns and Artificial Intelligence Techniques. Sensors, v.24, p.3931. https://doi.org/10.3390/s24123931
- Fischer, T.P., Takahata, N., Sano, Y., Sumino, H. and Hilton, D.R. (2005) Nitrogen isotopes of the mantle: Insights from mineral separates. Geophysical Research Letters. v.32, p.1-5. https://doi.org/10.1029/2005GL022792
- Fourati, F. and Alouini, M.S. (2021) Artificial intelligence for satellite communication: A review. Intelligent and Converged Networks, v.2, p.213-243. https://doi.org/10.23919/ICN.2021.0015
- Gao, J., Yu, Y., Wang, D., Wang, W., Yu, F., Zhang, S., Wang, C., Dai, H., Hao, X. and Cen, K. (2022) Multielement biogeochemistry and lithium isotopic composition of the dominant plants at the Jiajika mine, western Sichuan, China - The largest hard rock-type lithium mine in Asia. Applied Geochemistry, v.136, p.105138. https://doi.org/10.1016/j.apgeochem.2021.105138
- Gomez-Flores, A., Ilyas, S., Heyes, G.W. and Kim, H. (2022) A critical review of artificial intelligence in mineral concentration. Minerals Engineering, v.189, p.107884. https://doi.org/10.1016/j.mineng.2022.107884
- Graham, I.J. (1992) Strontium isotope composition of rotorua geothermal waters. Geothermics, v.21, p.165-180. https://doi.org/10.1016/0375-6505(92)90075-K
- Gregoire, J.M., Zhou, L. and Haber, J.A. (2023). Combinatorial synthesis for AI-driven materials discovery. Nature Synthesis, v.2, p.493-504. https://doi.org/10.1038/s44160-023-00251-4
- Han, Z., Zhang, B., Wu, H., Liu, H., Qiao, Y. and Zhang, S. (2020) Microscopic characterisation of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. Journal of Geochemical Exploration, v.217, p.106562. https://doi.org/10.1016/j.gexplo.2020.106562
- Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, v.370, p.519-527. https://doi.org/10.1038/370519a0
- Hoatson, D.M., Jaireth, S. and Jaques, A.L. (2006) Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews, v.29, p.177-241. https://doi.org/10.1016/j.oregeorev.2006.05.002
- Hronsky, J.M.A. and Kreuzer, O.P. (2019) Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, v.107, p.647-653. https://doi.org/10.1016/j.oregeorev.2019.03.016
- Hutchison, W., Finch, A.A. and Boyce, A.J. (2020) The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. Geochimica et Cosmochimica Acta, v.288, p.176-198. https://doi.org/10.1016/j.gca.2020.07.042
- Ishibashi, J., Yamashita, K., Kitamura, K., Fujimitsu, Y., Oshima, S. and Kiyota, Y. (2022) Gas geochemistry of geothermal fluids from the Hatchobaru geothermal field, Japan. Geothermics, v.102, p.102379. https://doi.org/10.1016/j.geothermics.2022.102379
- Ito, A., Otake, T., Shin, K.C., Ariffin, K.S., Yeoh, F.Y. and Sato, T. (2017) Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Applied Geochemistry, v.82, p.89-101. https://doi.org/10.1016/j.apgeochem.2017.05.007
- Jena, R., Shanableh, A., Al-Ruzouq, R., Pradhan, B., Gibril, M.B.A., Khalil, M.A., Ghorbanzadeh, O. and Ghamisi, P. (2023). Earthquake spatial probability and hazard estimation using various explainable AI (XAI) models at the Arabian peninsula. Remote Sensing Applications: Society and Environment, v.31, p.101004. https://doi.org/10.1016/j.rsase.2023.101004
- Jia, Y. and Kerrich, R. (1999) Nitrogen isotope systematics of mesothermal lode gold deposits: Metamorphic, granitic, meteoric water, or mantle origin?. Geology, v.27, p.1051-1054. https://doi.org/10.1130/0091-7613(1999)027<1051:NISOML>2.3.CO;2
- Ji, K., Kim, J., Lee, M., Park, S., Kwon, H.J., Cheong, H.K., Jang, J.Y., Kim, D.S., Yu, S., Kim, Y.W., Lee, K.Y., Yang, S.O., Jhung, I.J., Yang, W.H., Paek, D.H., Hong, Y.C. and Choi, K. (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, v.178, p.322-328. https://doi.org/10.1016/j.envpol.2013.03.031
- Jo, J., Yamanaka, T., Kashimura, T., Okunishi, Y., Kuwahara, Y., Miyoshi, Y., Ishibashi, J. and Chiba, H. (2018) Mineral nitrogen isotope signature in clay minerals formed under high ammonium environment conditions in sediment associated with ammonium-rich sediment-hosted hydrothermal system. Geochemical Journal, v.52, p.1-16. https://doi.org/10.2343/geochemj.2.0518
- Jo, J., Yamanaka, T. and Shin, D. (2023) Nitrogen isotope geochemistry of ion adsorption-type REE mineralization: Insights from the weathered granitoid rocks in the Sancheong district, South Korea. Ore Geology Reviews, v.157, p.105429. https://doi.org/10.1016/j.oregeorev.2023.105429
- Kelley, D.L., Kelley, K.D., Coker, W.B., Caughlin, B. and Doherty, M.E. (2006) Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Economic Geology, v.101, p.729-752. https://doi.org/10.2113/gsecongeo.101.4.729
- Kristiansson, K. and Malmqvist, L. (1982) Evidence for non-diffusive transport of Rn in the ground and a new physical model for the transport. Geophysics, v.47, p.1444-1452. https://doi.org/10.1190/1.1441293
- Kristiansson, K. and Malmqvist, L. (1987) Trace elements in the geogas and their relation to bedrock composition. Geoexploration, v.24, p.517-534. https://doi.org/10.1016/0016-7142(87)90019-6
- Lee, J.Y., Choi, J.C. and Lee, K.K. (2005) Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environmental Geochemistry and Health, v.27, p.237-257. https://doi.org/10.1007/s10653-004-3480-7
- Li, L., Lollar, B.S., Li, H., Wortmann, U.G. and Lacrampe-Couloume, G. (2012) Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 ℃ and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochimica et Cosmochimica Acta. v.84, p.280-296. https://doi.org/10.1016/j.gca.2012.01.040
- Li, Q., Ye, R., Duan, H., Xu, K., Shen, S. and Tian, Y. (2024a) Geogas prospecting for igneous ore deposits covered by regolith: the Zijinshan high-sulfidation epithermal Cu-Au deposit in the Cathaysia Block. Geochemistry: Exploration, Environment, Analysis v.24, p.geochem2023-2061. https://doi.org/10.1144/geochem2023-061
- Li, Y., Zhao, P., Dor, J. and Zhang, H. (2024b) Multi-isotopes (H, O, Sr, and Li) and element geochemistry constrain the formation of Kongchutso helium-rich geothermal field in western Tibet, China. Geothermics, v.120, p.102986. https://doi.org/10.1016/j.geothermics.2024.102986
- Lin, C., Cheng, Z., Chen, X., Lu, Z., Pang, Z., Xue, J. and Tao, W. (2021) Application of multi-component gas geochemical survey for deep mineral exploration in covered areas. Journal of Geochemical Exploration, v.220, p.106656. https://doi.org/10.1016/j.gexplo.2020.106656
- Liu, J., Qin, Y., Yuan, S., Gao, P. and Nie, Q. (2021) Investigation on the mechanism of water activated via tourmaline powder. Journal of Molecular Liquids, v.332, p.115854. https://doi.org/10.1016/j.molliq.2021.115854
- Liu, R., Cao, J., Deng, Y., Wang, G. and Liu, X. (2020) Formation of nano- or near-nanoparticles via oxidation in the Dabaoshan concealed deposit, Guangdong Province. Arabian Journal of Geosciences, v.13, p.1061. https://doi.org/10.1007/s12517-020-06057-4
- Liu, T., Wang, H., Tian, S., Wang, D., Li, X., Fu, X., Hao, X., Zhang, Y. and Hou, K. (2023) Genesis of the Jiajika superlarge lithium deposit, Sichuan, China: constraints from He-Ar-H-O isotopes. Acta Geochimica, v.42, p.517-534. https://doi.org/10.1007/s11631-023-00593-y
- London, D. and Morgan, G.B. (2012) The pegmatite puzzle. Elements v.8, p.263-268. https://doi.org/10.2113/gselements.8.4.263
- Lu, M., Cao, J., Liu, X. and Qiu, J. (2021) Nanoparticles in various media on surfaces of ore deposits: Study of the more than 1000 m deep concealed Shaling gold deposit. Ore Geology Reviews, v.139, p.104466. https://doi.org/10.1016/j.oregeorev.2021.104466
- Lu, M., Ye, R., Wang, Z. and Wang, X. (2019) Geogas prospecting for buried deposits under loess overburden: Taking Shenjiayao gold deposit as an example. Journal of Geochemical Exploration, v.197, p.122-129. https://doi.org/10.1016/j.gexplo.2018.11.015
- Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z.W., Liu, C., Pan, H., Li, S., Wen, Y. and Yan, Q. (2022) Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. Advanced Materials, v.34, p.2101474. https://doi.org/10.1002/adma.202101474
- Ma, S., Cao, J. and Liang, H. (2024) A study of Au-bearing-nanoparticle-enriched plants from the concealed gold deposits and their prospecting significance. Ore Geology Reviews, v.165, p.105910. https://doi.org/10.1016/j.oregeorev.2024.105910
- Malmqvist, L., Kristiansson, K. and Kristiansson, P. (1999) Geogas prospecting - an ideal industrial application of PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v.150, p.484-490. https://doi.org/10.1016/S0168-583X(98)01044-1
- Mao, J., Zhang, Z., Wang, Y., Jia, Y. and Kerrich, R. (2003) Nitrogen isotope and content record of Mesozoic orogenic gold deposits surrounding the North China craton. Science China Earth Sciences, v.46, p.231-245. https://doi.org/10.1360/03yd9022
- Markl, G., Lahaye, Y. and Schwinn, G. (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochimica et Cosmochimica Acta, v.70, p.4215-4228. https://doi.org/10.1016/j.gca.2006.06.1369
- Marty, B., Pik, R.l. and Gezahegn, Y. (1996) Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution. Earth and Planetary Science Letters, v.144, p.223-237. https://doi.org/10.1016/0012-821X(96)00158-6
- Mastalerz, M., Drobniak, A., Eble, C., Ames, P. and McLaughlin, P. (2020) Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. International Journal of Coal Geology, v.231, p.103620. https://doi.org/10.1016/j.coal.2020.103620
- Mathur, R. and Zhao, Y. (2023) Copper isotopes used in mineral exploration. In: D. Huston and J. Gutzmer (Editors), Isotopes in economic geology, metallogenesis and exploration. Springer International Publishing, Cham, pp. 433-450. https://doi.org/10.1007/978-3-031-27897-6_14
- Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J. and Hart, G. (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, v.102, p.1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
- Mathur, R., Ruiz, J., Titley, S., Liermann, L., Buss, H. and Brantley, S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta, v.69, p.5233-5246. https://doi.org/10.1016/j.gca.2005.06.022
- McClenaghan, M.B. (2005) Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, v.5, p.233-245. https://doi.org/10.1144/1467-7873/03-066
- McLennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, v.2, p.1021. https://doi.org/10.1029/2000GC000109
- Mernagh, T., Bastrakov, E., Jaireth, S., De Caritat, P., English, P. and Clarke, J. (2016) A review of Australian salt lakes and associated mineral systems. Australian Journal of Earth Sciences, v.63, p.131-157. https://doi.org/10.1080/08120099.2016.1149517
- Mery, N. and Marcotte, D. (2022) Assessment of recoverable resource uncertainty in Multivariate deposits through a simple machine learning technique trained using geostatistical simulations. Natural Resources Research, v.31, p.767-783. https://doi.org/10.1007/s11053-022-10028-9
- Mi, Y., Cao, J. and Wang, Z. (2017) Transmission electron microscopy analysis on fault gouges from the depths of the Bairendaba polymetallic deposit, Inner Mongolia, China. Journal of Nanoscience and Nanotechnology, v.17, p.6549-6557. https://doi.org/10.1166/jnn.2017.14461
- Mikhail, S., Barry, P.H. and Sverjensky, D.A. (2017) The relationship between mantle pH and the deep nitrogen cycle. Geochimica et Cosmochimica Acta, v.209, p.149-160. https://doi.org/10.1016/j.gca.2017.04.007
- Millot, R. and Negrel, P. (2007) Multi-isotopic tracing (δ7 Li, δ11B, 87Sr/ 86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France. Chemical Geology, v.244, p.664-678. https://doi.org/10.1016/j.chemgeo.2007.07.015
- Millot, R., Scaillet, B. and Sanjuan, B. (2010) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta, v.74, p.1852-1871. https://insu.hal.science/insu-00442612
- Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J. and Torabi, H. (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biology and Biochemistry, v.39, p.2014-2026. https://doi.org/10.1016/j.soilbio.2007.02.017
- Mukube, P., Hitzman, M., Machogo-Phao, L. and Syampungani, S. (2024) Geochemistry of terrestrial plants in the Central African copperbelt: Implications for sediment hosted copper-cobalt exploration. Minerals v.14, p.294. https://doi.org/10.3390/min14030294
- Nishiyama, T. (1992) Geochemical anomalies as a background of geochemical prospecting. Chihyukagaku, v.25, p.127-143. https://doi.org/10.14934/chikyukagaku.25.127
- Nkrumah, P.N., Erskine, P.D., Erskine, J.D. and van der Ent, A. (2021) Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant and Soil, v.464, p.375-389. https://doi.org/10.1007/s11104-021-04956-3
- Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, v.67, p.551-578. https://doi.org/10.2113/gsecongeo.67.5.551
- Parkinson, I.J., Hammond, S.J., James, R.H. and Rogers, N.W. (2007) High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, v.257, p.609-621. https://doi.org/10.1016/j.epsl.2007.03.023
- Pattyn, F. (2024) The value of generative AI for qualitative research: A pilot study. Journal of Data Science and Intelligent Systems. https://doi.org/10.47852/bonviewJDSIS4202964
- Pitcairn, I.K., Teagle, D.A.H., Kerrich, R., Craw, D. and Brewer, T.S. (2005). The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: Evidence from the Otago and Alpine Schists, New Zealand. Earth Planetary Science Letters, v.233, p.229-246. https://doi.org/10.1016/j.epsl.2005.01.029
- Plet, C. and Noble, R.R.P. (2023) Soil gases in mineral exploration: a review and the potential for future developments. Geochemistry: Exploration, Environment, Analysis, v.23, p.geochem2023-008. https://doi.org/10.1144/geochem2023-008
- Pourghasemi, H.R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T. and Cerda, A. (2020) Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Scientific Reports, v.10, p.3203. https://doi.org/10.1038/s41598-020-60191-3
- Prado, E.M.G., de Souza Filho, C.R., Carranza, E.J.M. and Motta, J.G. (2020) Modeling of Cu-Au prospectivity in the Carajas mineral province (Brazil) through machine learning: Dealing with imbalanced training data. Ore Geology Reviews, v.124, p.103611. https://doi.org/10.1016/j.oregeorev.2020.103611
- Radic, A., Lacan, F. and Murray, J.W. (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters, v.306, p.1-10. https://doi.org/10.1016/j.epsl.2011.03.015
- Richet, P., Bottinga, Y. and Janoy, M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Annual Review of Earth and Planetary Sciences, v.5, p.65-110. https://doi.org/10.1146/annurev.ea.05.050177.000433
- Rose, A.W., Hawkes, H.E. and Webb, J.S. (1979) Geochemistry in mineral exploration. Second edition, Academic Press, New York. 633p. https://doi.org/10.1017/S0016756800029046
- Rouxel, O., Shanksiii, W., Bach, W. and Edwards, K. (2008) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N. Chemical Geology, v.252, p.214-227. https://doi.org/10.1016/j.chemgeo.2008.03.009
- Rudnick, R.L., Tomascak, P.B., Njo, H.B. and Gardner, L.R. (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology, v.212, p.45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008
- Sadeghi, M., Casey, P., Carranza, E.J.M. and Lynch, E.P. (2024) Principal components analysis and K-means clustering of till geochemical data: Mapping and targeting of prospective areas for lithium exploration in Vasternorrland Region, Sweden. Ore Geology Reviews, v.167, p.106002. https://doi.org/10.1016/j.oregeorev.2024.106002
- Schauble, E.A. (2004) Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, v.55, p.65-111. https://doi.org/10.2138/gsrmg.55.1.65
- Schnitzler, N., Ross, P.S. and Gloaguen, E. (2019) Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. Journal of Geochemical Exploration, v.205, p.106344. https://doi.org/10.1016/j.gexplo.2019.106344
- Schwinn, G., Wagner, T., Baatartsogt, B., Markl, G., 2006. Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Acta, v.70, p.965-982. https://doi.org/10.1016/j.gca.2005.10.022
- Serban, A.C. and Lytras, M.D. (2020) Artificial intelligence for smart renewable energy sector in Europe-smart energy infrastructures for next generation smart cities. IEEE Access, v.8, p.77364-77377. https://doi.org/10.1109/ACCESS.2020.2990123
- Shaffique, S., Hussain, S., Kang, S.M., Imran, M., Kwon, E.H., Khan, M.A. and Lee, I.J. (2023) Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. Frontiers in Plant Science, v.14, p.1188856. https://doi.org/10.3389/fpls.2023.1188856
- Shaheen, S.M., Tsadilas, C.D. and Rinklebe, J. (2013) A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, v.201-202, p.43-56. https://doi.org/10.1016/j.cis.2013.10.005
- Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, v.105, p.3-41. https://doi.org/10.2113/gsecongeo.105.1.3
- Simmons, S.F., Sawkins, F.J. and Schlutter, D.J. (1987) Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, v.329, p.429-432. https://doi.org/10.1038/329429a0
- Stefansson, A. (2017) Gas chemistry of Icelandic thermal fluids. Journal of Volcanology and Geothermal Research, v.346, p.81-94. https://doi.org/10.1016/j.jvolgeores.2017.04.002
- Sun, B., Liu, J., Wang, X., Dao, Y., Xu, G., Cui, X., Guan, X., Wang, W. and Song, D. (2019) Geochemical characteristics and genetic type of a lithium ore (mineralized) body in the central Yunnan Province, China. China Geology, v.2, p.287-300. https://doi.org/10.31035/cg2018118
- Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y. and Ceder, G. (2023) An autonomous laboratory for the accelerated synthesis of novel materials. Nature, v.624, p.86-91. https://doi.org/10.1038/s41586-023-06734-w
- Tao, Y., Shen, L., Feng, C., Yang, R., Qu, J., Ju, H. and Zhang, Y. (2022) Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, v.298, p.118540. https://doi.org/10.1016/j.envpol.2021.118540
- Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W. and Gao, S. (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, v.68, p.4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
- Tsutsumi, S. and Ishibashi, J.-i. (2022) Geochemical exploration: Application of fluid geochemistry to the utilization of geothermal energy. Journal of Geography (Chigaku Zasshi), v.131, p.597-607 (Japanese with english abstract). https://doi.org/10.5026/jgeography.131.597
- Wan, W., Wang, M., Hu, M. and Gao, Y. (2017) Identification of metal sources in Geogas from the Wangjiazhuang copper deposit, Shandong, China: Evidence from lead isotopes. Journal of Geochemical Exploration, v.172, p.167-173. https://doi.org/10.1016/j.gexplo.2016.10.008
- Wang, D.H., Dai, H.Z., Liu, S.B., Wang, C.H., Yu, Y., Dai, J.J., Liu, L.J., Yang, Y.Q. and Ma, S.C. (2020) Research and exploration progress on lithium deposits in China, China Geology, v.3, p.137-152. https://doi.org/10.31035/cg2020018
- Wang, M.Q. and Gao, Y.Y. (2007) Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu province. Geology, Environmental Science, v.36, p.391-399. (In Chinese with English Abstract)
- Wang, M.Q,, Gao Y.Y. and Liu, Y.H. (2008) Progress in the collection of Geogas in China. Geochemistry: Exploration, Environment, Analysis v.8, p.183-190. https://doi.org/10.1144/1467-7873/07-138
- Wang, Q., Wang, X., Cheng, Z., Zhang, B., Du, Z., Yan T, Yuan, H., Li, X., Qiao, Y. and Liu, H. (2023). Geogas-carried metal prospecting for concealed ore deposits: A review of case studies in China. Minerals, v.13, p.1553. https://doi.org/10.3390/min13121553
- Wang, X., Cheng, Z., Lu, Y., Xu, L. and Xie, X. (1997) Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration. v.58, p.63-72. https://doi.org/10.1016/S0375-6742(96)00052-0
- Wang, X., Xie, X. and Lu, Y. (1995) Dynamic collection of geogas and its preliminary application in search for concealed deposits. Geophysical & Geochemical Exploration, v.19, p.161-171. (In Chinese with English Abstract)
- Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, v.59, p.1217-1232. https://doi.org/10.1016/j.gsf.2018.12.005
- Wiggenhauser, M., Moore, R.E.T., Wang, P., Bienert, G.P., Laursen, K.H. and Blotevogel, S. (2022) Stable isotope fractionation of metals and metalloids in plants: A Review. Frontiers in Plant Science, v.13. p.840941. https://doi.org/10.3389/fpls.2022.840941
- Xie, P., Hower, J.C., Nechaev, V.P., Ju, D. and Liu, X. (2021) Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel, v.300, p.120948. https://doi.org/10.1016/j.fuel.2021.120948
- Xu, Z., Liang, B., Jiang, H., Liu, T., Wang, Q., Duan, J., Chen, B. and He, Y. (2024) Factor analysis of geogas data for concealed lithium deposits detection and false anomalies identification in Jiajika area. Journal of Geochemical Exploration, v.263, p.107511. https://doi.org/10.1016/j.gexplo.2024.107511
- Xuejing, X. and Xueqiu, W. (1991) Geochemical exploration for gold: a new approach to an old problem. Journal of Geochemical Exploration, v.40, p.25-48. https://doi.org/10.1016/0375-6742(91)90030-X
- Xueqiu, W., Bimin, Z., Xin, L., Shanfa, X., Wensheng, Y. and Rong, Y. (2016) Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geology Reviews, v.73, p.417-431. https://doi.org/10.1016/j.oregeorev.2015.08.015
- Yang, J., Zhou, S., Liu, X. and Hu, B. (2019) Geogas field characteristics of the Kaiu'an pegmatite lithium deposit and its prospecting significance. Acta Petrologica et Mineralogica, v.38, p.570-578. https://www.yskw.ac.cn/yskwxzzen/article/abstract/20190410
- Yang, Z., Wu, P., Fu, Y., Qiao, W., Qin, Y., Li, C., Xia, P., Guo, C., Long, X. and Wu, L. (2022) Coupling of the redox history and enrichment of Ni-Mo in black shale during the early Cambrian: Constraints from S-Fe isotopes and trace elements of pyrite, South China. Ore Geology Reviews, v.143, p.104749. https://doi.org/10.1016/j.oregeorev.2022.104749
- Yasukawa, K, and Noda, T. (2017) Geochemical criteria to evaluate hydraulic and thermal relationship between geochermal reservoir and nearby hot spring aquifer. Journal of the Geothermal Research Society of Japan. v.39, p.203-215. https://doi.org/10.11367/grsj.39.203
- Ye, R., Zhang, B. and Wang, Y. (2015) Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit. Geochemistry: Exploration, Environment, Analysis, v.15, p.62-71. https://doi.org/10.1144/geochem2013-228
- Zeba, G., Dabic, M., Cicak, M., Daim, T. and Yalcin, H. (2021) Technology mining: Artificial intelligence in manufacturing. Technological Forecasting and Social Change, v.171, p.120971. https://doi.org/10.1016/j.techfore.2021.120971
- Zhai, M., Hu, R., Wang, Y., Jiang, S., Wang, R., Li, J., Chen, H., Yang, Z., Lu, Q., Qi, T., Shi, X., Li, Y., Liu, J., Li, Z. and Zhu, X. (2021) Mineral resource science in China: Review and perspective. Geography and Sustainability, v.2, p.107-114. https://doi.org/10.1016/j.geosus.2021.05.002
- Zhang, Y., Li, W. and Brzozowski, M.J. (2024) Dynamics of Cu isotope fractionation during the reactions of pyrite with Cu(I)-bearing hydrothermal fluids. Geochimica et Cosmochimica Acta, v.383, p.43-56. https://doi.org/10.1016/j.gca.2024.08.001
- Zheng, M., Xing, E., Zhang, X., Li, M., Che, D., Bu, L., Han, J. and Ye, C. (2023) Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. China Geology, v.6, p.547-566. https://doi.org/10.31035/cg2023061
- Zhou, J.M., Dang, Z., Cai, M.F. and Liu, C.Q. (2007) Soil heavy metal pollution around the Dabaoshan mine, Guangdong Province, China. Pedosphere, v.17, p.588-594. https://doi.org/10.1016/S1002-0160(07)60069-1
- Zuo, R., Xiong, Y., Wang, Z., Wang, J. and Kreuzer, O.P. (2023) A new generation of artificial intelligence algorithms for mineral prospectivity mapping: Natural Resources Research, v.32, p.1859-1869. https://doi.org/10.1007/s11053-023-10237-w