DOI QR코드

DOI QR Code

Geochemical Approaches to Mineral Resources Exploration

광물자원 탐사를 위한 지구화학적 접근

  • Jaeguk Jo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Bum Han Lee (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Chul-Ho Heo (Minerals Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 조재국 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 이범한 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 허철호 (한국지질자원연구원 광물자원연구본부)
  • Received : 2024.08.25
  • Accepted : 2024.10.07
  • Published : 2024.10.29

Abstract

As surface resources are continually developed and depleted, there is an increasing need to explore deeper ore bodies. Simultaneously, global demand for eco-friendly energy sources increases due to decarbonization policies, intensifying competition among nations to secure critical mineral resources. Geochemical exploration is based on the behavior of specific elements derived from mineral deposits and should be conducted with consideration of numerous geological variables. The characteristics of elemental concentration around ore bodies, which can be observed in media such as natural water, river sediments, soil, rock, vegetation, and geogas, provide clues for predicting the distribution of undiscovered ore bodies. For this reason, it is essential to identify the types of indicator elements that can be used for exploration depending on the mineralization type, and to establish a systematic geological exploration methodology based on the behavior of elements around mineralized ore bodies. Furthermore, applying Al technology to these geochemical characteristics would aid to exploration for critical mineral resources.

지속적인 개발로 인해 지표에 노출된 자원이 고갈됨에 따라 지하 깊은 곳에 존재하는 부존 광체를 탐사할 필요성이 커지고 있다. 동시에 탈탄소화 정책의 일환으로 친환경 에너지 자원에 대한 글로벌 수요가 증가하면서 희소 광물자원을 확보하기 위한 국가 간 경쟁이 심화되었다. 지구화학 탐사는 광상에서 유래된 특정 원소의 거동을 기반으로 하며, 많은 지질학적 변수를 고려해야 한다. 자연수, 하천 퇴적물, 토양, 암석, 식생, 지오가스 등 다양한 매개체를 통해 관찰되는 광체 주변의 지시원소 농집 특성은 미확인 광체의 분포를 예측하는 데 중요한 단서를 제공한다. 따라서, 광화작용 유형별 탐사에 활용될 수 있는 지시원소를 특정하고, 광체 주변에서의 원소 거동 특성에 기반한 체계적인 지구화학 탐사법 확립이 필요하다. 나아가 이러한 지구화학적 특성에 기반하여 AI 기술을 적용한다면, 향후 광물 자원탐사에 도움이 될 것이다.

Keywords

Acknowledgement

이 연구는 한국지질자원연구원 자체사업인 "AI 기반 핵심광물 탐사 및 실증 예비 연구(24-7501)"의 지원을 받아 수행되었습니다. 유익한 조언을 해주신 익명의 두 심사자께 감사드립니다.

References

  1. Abba, S.I., Usman, J., Abdulazeez, I., Yogarathinam, L.T., Usman, A.G., Lawal, D., Salhi, B., Baig, N. and Aljundi, I.H. (2024). Enhancing Li+  recovery in brine mining: integrating next-gen emotional AI and explainable ML to predict adsorption energy in crown ether-based hierarchical nanomaterials. RSC Advances, v.14, p.15129-15142. https://doi.org/10.1039/D4RA02385D
  2. Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P. and Halverson, G.P. (2016) Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives. Chemical Geology, v.429, p.93-110. https://doi.org/10.1016/j.chemgeo.2016.02.010
  3. Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y. and Chen, H. (2021) Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, v.289, p.125834. https://doi.org/10.1016/j.jclepro.2021.125834
  4. Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., AlGhamdi, A.S. and Alshamrani, S.S. (2022) Energetics systems and artificial intelligence: Applications of industry 4.0. Energy Reports, v.8, p.334-361. https://doi.org/10.1016/j.egyr.2021.11.256
  5. Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R.K., Sharma, S., Tripathi, D.K., Dubey, N.K. and Chauhan, D.K. (2016) Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Frontiers in Environmental Science, v.4. https://doi.org/10.3389/fenvs.2016.00069
  6. Arndt, N. (2013) The lithospheric mantle plays no active role in the formation of orthomagmatic ore deposits. Economic Geology v.108, p.1953-1970. https://doi.org/10.2113/econgeo.108.8.1953
  7. Balaram, V. (2022) Rare earth element deposits: Sources, and exploration strategies. Journal of the Geological Society of India, v.98, p. 1210-1216. https://doi.org/10.1007/s12594-022-2154-3
  8. Barefoot, R.R. and Van Loon, J.C. (1999) Recent advances in the determination of the platinum group elements and gold. Talanta, v.49, p.1-14. https://doi.org/10.1016/S0039-9140(98)00347-6
  9. Barker, J.F. and Fritz, P. (1981) Carbon isotope fractionation during microbial methane oxidation. Nature, v.293, p.289-291. https://doi.org/10.1038/293289a0
  10. Beard, B.L., Johnson, C.M., Cox, L., Sun, H., Nealson, K.H. and Aguilar, C. (1999) Iron isotope biosignatures. Science, v.285, p.1889-1892. https://doi.org/10.1126/science.285.5435.1889
  11. Belousova, E.A., Griffin, W.L., O'Reilly, S.Y. and Fisher, N.I. (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, v.76, p.45-69. https://doi.org/10.1016/S0375-6742(02)00204-2
  12. Bennett, S.A., Rouxel, O., Schmidt, K., Garbe-Schonberg, D., Statham, P.J. and German, C.R. (2009) Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta, v. 73, p. 5619-5634. https://doi.org/10.1016/j.gca.2009.06.027
  13. Berberich, G.M. and Berberich, M.B. (2022) Comparison of geogases in two cenozoic sedimentary basins. Geosciences, v.12, p.388. https://doi.org/10.3390/geosciences12100388
  14. Bishop, B.A. and Robbins, L.J. (2024) Using machine learning to identify indicators of rare earth element enrichment in sedimentary strata with applications for metal prospectivity. Journal of Geochemical Exploration, v.258, p.107388. https://doi.org/10.1016/j.gexplo.2024.107388
  15. Borse, J.H., Patil, D.D., Kumar, V. and Kumar, S. (2022) Soft landing parameter measurements for candidate navigation trajectories using deep learning and AI-enabled planetary descent. mathematical problems in engineering, v.2022, p.2886312. https://doi.org/10.1155/2022/2886312
  16. Bowell, R.J., Lagos, L., de los Hoyos, C.R. and Declercq, J. (2020) Classification and characteristics of natural lithium resources. Elements, v.16, p.259-264. https://doi.org/10.2138/gselements.16.4.259
  17. Breiter, K., Hlozkova, M., Korbelova, Z. and Galiova, M.V. (2019) Diversity of lithium mica compositions in mineralized granite-greisen system: Cinovec Li-Sn-W deposit, Erzgebirge. Ore Geology Reviews, v.106, p.12-27. https://doi.org/10.1016/j.oregeorev.2019.01.013
  18. Busche, F.D. (1989) Using plants as an exploration tool for gold. Journal of Geochemical Exploration, v.32, p.199-209. https://doi.org/10.1016/0375-6742(89)90056-3
  19. Cao, J., Hu, R., Liang, Z. and Peng, Z. (2009) TEM observation of geogas-carried particles from the Changkeng concealed gold deposit, Guangdong Province, South China. Journal of Geochemical Exploration, v.101, p.247-253. https://doi.org/10.1016/j.gexplo.2008.09.001
  20. Cao, J.J., Hu, X.Y., Jiang, Z.T., Li, H.W. and Zou, X.Z. (2010) Simulation of adsorption of gold nanoparticles carried by gas ascending from the Earth's interior in alluvial cover of the middle-lower reaches of the Yangtze River. Geofluids, v.10, p.438-446. https://doi.org/10.1111/j.1468-8123.2010.00287.x
  21. Carrillo-Gonzalez, R., Simunek, J., Sauve, S. and Adriano, D. (2006) Mechanisms and pathways of trace element mobility in soils. In: Advances in Agronomy. Academic Press, pp.111-178. https://doi.org/10.1016/S0065-2113(06)91003-7
  22. Casquet, C., Galindo, C., Tornos, F., Velasco, F. and Canales, A. (2001) The Aguablanca Cu-Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: age and isotope composition of magmas (Sr, Nd) and ore (S). Ore Geology Reviews, v.18, p.237-250. https://doi.org/10.1016/S0169-1368(01)00033-6
  23. Cerny, P. (1991) Rare-element granitic pegmatites. Part I: Anatomy and internal evolution of pegmatitic deposits. Geoscience Canada, v.18, p.49-67. https://id.erudit.org/iderudit/geocan18_2art01
  24. Chambers, L.A. and Trudinger P.A. (1979) Microbiological fractionation of stable sulfur isotopes: A review and critique. Geomicrobiology Journal, v.1, p.249-293. https://doi.org/10.1080/01490457909377735
  25. Chen, S.H., Jakeman, A.J. and Norton, J.P. (2008) Artificial intelligence techniques: An introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation, v.78, p.379-400. https://doi.org/10.1016/j.matcom.2008.01.028
  26. Chen, X., Liu, Y., Jiang, Y. and Feng, S. (2023) Radon transport carried by geogas: prediction model. Environmental Science and Pollution Research, v.30, p.86656-86675. https://doi.org/10.1007/s11356-023-28616-4
  27. Ciotoli, G., Lombardi, S. and Annunziatellis, A. (2007) Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. Journal of Geophysical Research: Solid Earth, v.112, p.B05407. https://doi.org/10.1029/2005JB004044
  28. Cohen, D.R. and Bowell, R.J. (2014) 13.24 - Exploration Geochemistry, in Holland, H.D. and Turekian, K.K., eds., Treatise on Geochemistry (Second Edition). Oxford, Elsevier, p.623-650. https://doi.org/10.1016/B978-0-08-095975-7.01127-X
  29. Cohen, D.R., Kelley, D.L., Anand, R. and Coker, W.B. (2010) Major advances in exploration geochemistry, 1998-2007. Geochemistry: Exploration, Environment, Analysis, v.10, p.3-16. https://doi.org/10.1144/1467-7873/09-215
  30. Darnley, A.G. (1990) International geochemical mapping: a new global project. Journal of Geochemical Exploration, v.39, p.1-13. https://doi.org/10.1016/0375-6742(90)90066-J
  31. Di, S., Dai, S., Nechaev, V.P., French, D., Graham, I.T., Zhao, L., Finkelman, R.B., Wang, H., Zhang, S. and Hou, Y. (2023) Mineralogy and enrichment of critical elements (Li and Nb-Ta-Zr-Hf-Ga) in the Pennsylvanian coals from the Antaibao Surface Mine, Shanxi Province, China: derivation of pyroclastics and sediment-source regions. International Journal of Coal Geology, v.273, p.104262. https://doi.org/10.1016/j.coal.2023.104262
  32. Dikshit, A., Pradhan, B. and Alamri, A.M. (2021) Pathways and challenges of the application of artificial intelligence to geohazards modelling. Gondwana Research, v.100, p.290-301. https://doi.org/10.1016/j.gr.2020.08.007
  33. Eckstrand, O.R. and Hulbert, L.J. (2007) Magmatic nickel-copper-platinum group element deposits. Geological Association of Canada, Mineral Deposits Division, Special Publication, v.5, p.205-222.
  34. Feng, D., Aldrich, C. and Tan, H. (2000) Treatment of acid mine water by use of heavy metal precipitation and ion exchange. Minerals Engineering v.13, p.623-642. https://doi.org/10.1016/S0892-6875(00)00045-5
  35. Fernandez, J., Fernandez, S., Diez, E., Pinilla-Alonso, N., Perez, S., Iglesias, S., Buendia, A., Rodriguez, J. and de Cos, J. (2024) Lunar Lithium-7 Sensing (δ7 Li): Spectral Patterns and Artificial Intelligence Techniques. Sensors, v.24, p.3931. https://doi.org/10.3390/s24123931
  36. Fischer, T.P., Takahata, N., Sano, Y., Sumino, H. and Hilton, D.R. (2005) Nitrogen isotopes of the mantle: Insights from mineral separates. Geophysical Research Letters. v.32, p.1-5. https://doi.org/10.1029/2005GL022792
  37. Fourati, F. and Alouini, M.S. (2021) Artificial intelligence for satellite communication: A review. Intelligent and Converged Networks, v.2, p.213-243. https://doi.org/10.23919/ICN.2021.0015
  38. Gao, J., Yu, Y., Wang, D., Wang, W., Yu, F., Zhang, S., Wang, C., Dai, H., Hao, X. and Cen, K. (2022) Multielement biogeochemistry and lithium isotopic composition of the dominant plants at the Jiajika mine, western Sichuan, China - The largest hard rock-type lithium mine in Asia. Applied Geochemistry, v.136, p.105138. https://doi.org/10.1016/j.apgeochem.2021.105138
  39. Gomez-Flores, A., Ilyas, S., Heyes, G.W. and Kim, H. (2022) A critical review of artificial intelligence in mineral concentration. Minerals Engineering, v.189, p.107884. https://doi.org/10.1016/j.mineng.2022.107884
  40. Graham, I.J. (1992) Strontium isotope composition of rotorua geothermal waters. Geothermics, v.21, p.165-180. https://doi.org/10.1016/0375-6505(92)90075-K
  41. Gregoire, J.M., Zhou, L. and Haber, J.A. (2023). Combinatorial synthesis for AI-driven materials discovery. Nature Synthesis, v.2, p.493-504. https://doi.org/10.1038/s44160-023-00251-4
  42. Han, Z., Zhang, B., Wu, H., Liu, H., Qiao, Y. and Zhang, S. (2020) Microscopic characterisation of metallic nanoparticles in ore rocks, fault gouge and geogas from the Shanggong gold deposit, China. Journal of Geochemical Exploration, v.217, p.106562. https://doi.org/10.1016/j.gexplo.2020.106562
  43. Hedenquist, J.W. and Lowenstern, J.B. (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature, v.370, p.519-527. https://doi.org/10.1038/370519a0
  44. Hoatson, D.M., Jaireth, S. and Jaques, A.L. (2006) Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews, v.29, p.177-241. https://doi.org/10.1016/j.oregeorev.2006.05.002
  45. Hronsky, J.M.A. and Kreuzer, O.P. (2019) Applying spatial prospectivity mapping to exploration targeting: Fundamental practical issues and suggested solutions for the future. Ore Geology Reviews, v.107, p.647-653. https://doi.org/10.1016/j.oregeorev.2019.03.016
  46. Hutchison, W., Finch, A.A. and Boyce, A.J. (2020) The sulfur isotope evolution of magmatic-hydrothermal fluids: insights into ore-forming processes. Geochimica et Cosmochimica Acta, v.288, p.176-198. https://doi.org/10.1016/j.gca.2020.07.042
  47. Ishibashi, J., Yamashita, K., Kitamura, K., Fujimitsu, Y., Oshima, S. and Kiyota, Y. (2022) Gas geochemistry of geothermal fluids from the Hatchobaru geothermal field, Japan. Geothermics, v.102, p.102379. https://doi.org/10.1016/j.geothermics.2022.102379
  48. Ito, A., Otake, T., Shin, K.C., Ariffin, K.S., Yeoh, F.Y. and Sato, T. (2017) Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Applied Geochemistry, v.82, p.89-101. https://doi.org/10.1016/j.apgeochem.2017.05.007
  49. Jena, R., Shanableh, A., Al-Ruzouq, R., Pradhan, B., Gibril, M.B.A., Khalil, M.A., Ghorbanzadeh, O. and Ghamisi, P. (2023). Earthquake spatial probability and hazard estimation using various explainable AI (XAI) models at the Arabian peninsula. Remote Sensing Applications: Society and Environment, v.31, p.101004. https://doi.org/10.1016/j.rsase.2023.101004
  50. Jia, Y. and Kerrich, R. (1999) Nitrogen isotope systematics of mesothermal lode gold deposits: Metamorphic, granitic, meteoric water, or mantle origin?. Geology, v.27, p.1051-1054. https://doi.org/10.1130/0091-7613(1999)027<1051:NISOML>2.3.CO;2
  51. Ji, K., Kim, J., Lee, M., Park, S., Kwon, H.J., Cheong, H.K., Jang, J.Y., Kim, D.S., Yu, S., Kim, Y.W., Lee, K.Y., Yang, S.O., Jhung, I.J., Yang, W.H., Paek, D.H., Hong, Y.C. and Choi, K. (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution, v.178, p.322-328. https://doi.org/10.1016/j.envpol.2013.03.031
  52. Jo, J., Yamanaka, T., Kashimura, T., Okunishi, Y., Kuwahara, Y., Miyoshi, Y., Ishibashi, J. and Chiba, H. (2018) Mineral nitrogen isotope signature in clay minerals formed under high ammonium environment conditions in sediment associated with ammonium-rich sediment-hosted hydrothermal system. Geochemical Journal, v.52, p.1-16. https://doi.org/10.2343/geochemj.2.0518
  53. Jo, J., Yamanaka, T. and Shin, D. (2023) Nitrogen isotope geochemistry of ion adsorption-type REE mineralization: Insights from the weathered granitoid rocks in the Sancheong district, South Korea. Ore Geology Reviews, v.157, p.105429. https://doi.org/10.1016/j.oregeorev.2023.105429
  54. Kelley, D.L., Kelley, K.D., Coker, W.B., Caughlin, B. and Doherty, M.E. (2006) Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization. Economic Geology, v.101, p.729-752. https://doi.org/10.2113/gsecongeo.101.4.729
  55. Kristiansson, K. and Malmqvist, L. (1982) Evidence for non-diffusive transport of Rn in the ground and a new physical model for the transport. Geophysics, v.47, p.1444-1452. https://doi.org/10.1190/1.1441293
  56. Kristiansson, K. and Malmqvist, L. (1987) Trace elements in the geogas and their relation to bedrock composition. Geoexploration, v.24, p.517-534. https://doi.org/10.1016/0016-7142(87)90019-6
  57. Lee, J.Y., Choi, J.C. and Lee, K.K. (2005) Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea. Environmental Geochemistry and Health, v.27, p.237-257. https://doi.org/10.1007/s10653-004-3480-7
  58. Li, L., Lollar, B.S., Li, H., Wortmann, U.G. and Lacrampe-Couloume, G. (2012) Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 ℃ and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems. Geochimica et Cosmochimica Acta. v.84, p.280-296. https://doi.org/10.1016/j.gca.2012.01.040
  59. Li, Q., Ye, R., Duan, H., Xu, K., Shen, S. and Tian, Y. (2024a) Geogas prospecting for igneous ore deposits covered by regolith: the Zijinshan high-sulfidation epithermal Cu-Au deposit in the Cathaysia Block. Geochemistry: Exploration, Environment, Analysis v.24, p.geochem2023-2061. https://doi.org/10.1144/geochem2023-061
  60. Li, Y., Zhao, P., Dor, J. and Zhang, H. (2024b) Multi-isotopes (H, O, Sr, and Li) and element geochemistry constrain the formation of Kongchutso helium-rich geothermal field in western Tibet, China. Geothermics, v.120, p.102986. https://doi.org/10.1016/j.geothermics.2024.102986
  61. Lin, C., Cheng, Z., Chen, X., Lu, Z., Pang, Z., Xue, J. and Tao, W. (2021) Application of multi-component gas geochemical survey for deep mineral exploration in covered areas. Journal of Geochemical Exploration, v.220, p.106656. https://doi.org/10.1016/j.gexplo.2020.106656
  62. Liu, J., Qin, Y., Yuan, S., Gao, P. and Nie, Q. (2021) Investigation on the mechanism of water activated via tourmaline powder. Journal of Molecular Liquids, v.332, p.115854. https://doi.org/10.1016/j.molliq.2021.115854
  63. Liu, R., Cao, J., Deng, Y., Wang, G. and Liu, X. (2020) Formation of nano- or near-nanoparticles via oxidation in the Dabaoshan concealed deposit, Guangdong Province. Arabian Journal of Geosciences, v.13, p.1061. https://doi.org/10.1007/s12517-020-06057-4
  64. Liu, T., Wang, H., Tian, S., Wang, D., Li, X., Fu, X., Hao, X., Zhang, Y. and Hou, K. (2023) Genesis of the Jiajika superlarge lithium deposit, Sichuan, China: constraints from He-Ar-H-O isotopes. Acta Geochimica, v.42, p.517-534. https://doi.org/10.1007/s11631-023-00593-y
  65. London, D. and Morgan, G.B. (2012) The pegmatite puzzle. Elements v.8, p.263-268. https://doi.org/10.2113/gselements.8.4.263
  66. Lu, M., Cao, J., Liu, X. and Qiu, J. (2021) Nanoparticles in various media on surfaces of ore deposits: Study of the more than 1000 m deep concealed Shaling gold deposit. Ore Geology Reviews, v.139, p.104466. https://doi.org/10.1016/j.oregeorev.2021.104466
  67. Lu, M., Ye, R., Wang, Z. and Wang, X. (2019) Geogas prospecting for buried deposits under loess overburden: Taking Shenjiayao gold deposit as an example. Journal of Geochemical Exploration, v.197, p.122-129. https://doi.org/10.1016/j.gexplo.2018.11.015
  68. Lv, C., Zhou, X., Zhong, L., Yan, C., Srinivasan, M., Seh, Z.W., Liu, C., Pan, H., Li, S., Wen, Y. and Yan, Q. (2022) Machine learning: An advanced platform for materials development and state prediction in lithium-ion batteries. Advanced Materials, v.34, p.2101474. https://doi.org/10.1002/adma.202101474
  69. Ma, S., Cao, J. and Liang, H. (2024) A study of Au-bearing-nanoparticle-enriched plants from the concealed gold deposits and their prospecting significance. Ore Geology Reviews, v.165, p.105910. https://doi.org/10.1016/j.oregeorev.2024.105910
  70. Malmqvist, L., Kristiansson, K. and Kristiansson, P. (1999) Geogas prospecting - an ideal industrial application of PIXE. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v.150, p.484-490. https://doi.org/10.1016/S0168-583X(98)01044-1
  71. Mao, J., Zhang, Z., Wang, Y., Jia, Y. and Kerrich, R. (2003) Nitrogen isotope and content record of Mesozoic orogenic gold deposits surrounding the North China craton. Science China Earth Sciences, v.46, p.231-245. https://doi.org/10.1360/03yd9022
  72. Markl, G., Lahaye, Y. and Schwinn, G. (2006) Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochimica et Cosmochimica Acta, v.70, p.4215-4228. https://doi.org/10.1016/j.gca.2006.06.1369
  73. Marty, B., Pik, R.l. and Gezahegn, Y. (1996) Helium isotopic variations in Ethiopian plume lavas: nature of magmatic sources and limit on lower mantle contribution. Earth and Planetary Science Letters, v.144, p.223-237. https://doi.org/10.1016/0012-821X(96)00158-6
  74. Mastalerz, M., Drobniak, A., Eble, C., Ames, P. and McLaughlin, P. (2020) Rare earth elements and yttrium in Pennsylvanian coals and shales in the eastern part of the Illinois Basin. International Journal of Coal Geology, v.231, p.103620. https://doi.org/10.1016/j.coal.2020.103620
  75. Mathur, R. and Zhao, Y. (2023) Copper isotopes used in mineral exploration. In: D. Huston and J. Gutzmer (Editors), Isotopes in economic geology, metallogenesis and exploration. Springer International Publishing, Cham, pp. 433-450. https://doi.org/10.1007/978-3-031-27897-6_14
  76. Mathur, R., Titley, S., Barra, F., Brantley, S., Wilson, M., Phillips, A., Munizaga, F., Maksaev, V., Vervoort, J. and Hart, G. (2009) Exploration potential of Cu isotope fractionation in porphyry copper deposits. Journal of Geochemical Exploration, v.102, p.1-6. https://doi.org/10.1016/j.gexplo.2008.09.004
  77. Mathur, R., Ruiz, J., Titley, S., Liermann, L., Buss, H. and Brantley, S. (2005) Cu isotopic fractionation in the supergene environment with and without bacteria. Geochimica et Cosmochimica Acta, v.69, p.5233-5246. https://doi.org/10.1016/j.gca.2005.06.022
  78. McClenaghan, M.B. (2005) Indicator mineral methods in mineral exploration. Geochemistry: Exploration, Environment, Analysis, v.5, p.233-245. https://doi.org/10.1144/1467-7873/03-066
  79. McLennan, S.M. (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, v.2, p.1021. https://doi.org/10.1029/2000GC000109
  80. Mernagh, T., Bastrakov, E., Jaireth, S., De Caritat, P., English, P. and Clarke, J. (2016) A review of Australian salt lakes and associated mineral systems. Australian Journal of Earth Sciences, v.63, p.131-157. https://doi.org/10.1080/08120099.2016.1149517
  81. Mery, N. and Marcotte, D. (2022) Assessment of recoverable resource uncertainty in Multivariate deposits through a simple machine learning technique trained using geostatistical simulations. Natural Resources Research, v.31, p.767-783. https://doi.org/10.1007/s11053-022-10028-9
  82. Mi, Y., Cao, J. and Wang, Z. (2017) Transmission electron microscopy analysis on fault gouges from the depths of the Bairendaba polymetallic deposit, Inner Mongolia, China. Journal of Nanoscience and Nanotechnology, v.17, p.6549-6557. https://doi.org/10.1166/jnn.2017.14461
  83. Mikhail, S., Barry, P.H. and Sverjensky, D.A. (2017) The relationship between mantle pH and the deep nitrogen cycle. Geochimica et Cosmochimica Acta, v.209, p.149-160. https://doi.org/10.1016/j.gca.2017.04.007
  84. Millot, R. and Negrel, P. (2007) Multi-isotopic tracing (δ7 Li, δ11B, 87Sr/ 86Sr) and chemical geothermometry: evidence from hydro-geothermal systems in France. Chemical Geology, v.244, p.664-678. https://doi.org/10.1016/j.chemgeo.2007.07.015
  85. Millot, R., Scaillet, B. and Sanjuan, B. (2010) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochimica et Cosmochimica Acta, v.74, p.1852-1871. https://insu.hal.science/insu-00442612
  86. Miransari, M., Bahrami, H.A., Rejali, F., Malakouti, M.J. and Torabi, H. (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biology and Biochemistry, v.39, p.2014-2026. https://doi.org/10.1016/j.soilbio.2007.02.017
  87. Mukube, P., Hitzman, M., Machogo-Phao, L. and Syampungani, S. (2024) Geochemistry of terrestrial plants in the Central African copperbelt: Implications for sediment hosted copper-cobalt exploration. Minerals v.14, p.294. https://doi.org/10.3390/min14030294
  88. Nishiyama, T. (1992) Geochemical anomalies as a background of geochemical prospecting. Chihyukagaku, v.25, p.127-143. https://doi.org/10.14934/chikyukagaku.25.127
  89. Nkrumah, P.N., Erskine, P.D., Erskine, J.D. and van der Ent, A. (2021) Rare earth elements (REE) in soils and plants of a uranium-REE mine site and exploration target in Central Queensland, Australia. Plant and Soil, v.464, p.375-389. https://doi.org/10.1007/s11104-021-04956-3
  90. Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, v.67, p.551-578. https://doi.org/10.2113/gsecongeo.67.5.551
  91. Parkinson, I.J., Hammond, S.J., James, R.H. and Rogers, N.W. (2007) High-temperature lithium isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth and Planetary Science Letters, v.257, p.609-621. https://doi.org/10.1016/j.epsl.2007.03.023
  92. Pattyn, F. (2024) The value of generative AI for qualitative research: A pilot study. Journal of Data Science and Intelligent Systems. https://doi.org/10.47852/bonviewJDSIS4202964
  93. Pitcairn, I.K., Teagle, D.A.H., Kerrich, R., Craw, D. and Brewer, T.S. (2005). The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: Evidence from the Otago and Alpine Schists, New Zealand. Earth Planetary Science Letters, v.233, p.229-246. https://doi.org/10.1016/j.epsl.2005.01.029
  94. Plet, C. and Noble, R.R.P. (2023) Soil gases in mineral exploration: a review and the potential for future developments. Geochemistry: Exploration, Environment, Analysis, v.23, p.geochem2023-008. https://doi.org/10.1144/geochem2023-008
  95. Pourghasemi, H.R., Kariminejad, N., Amiri, M., Edalat, M., Zarafshar, M., Blaschke, T. and Cerda, A. (2020) Assessing and mapping multi-hazard risk susceptibility using a machine learning technique. Scientific Reports, v.10, p.3203. https://doi.org/10.1038/s41598-020-60191-3
  96. Prado, E.M.G., de Souza Filho, C.R., Carranza, E.J.M. and Motta, J.G. (2020) Modeling of Cu-Au prospectivity in the Carajas mineral province (Brazil) through machine learning: Dealing with imbalanced training data. Ore Geology Reviews, v.124, p.103611. https://doi.org/10.1016/j.oregeorev.2020.103611
  97. Radic, A., Lacan, F. and Murray, J.W. (2011) Iron isotopes in the seawater of the equatorial Pacific Ocean: New constraints for the oceanic iron cycle. Earth and Planetary Science Letters, v.306, p.1-10. https://doi.org/10.1016/j.epsl.2011.03.015
  98. Richet, P., Bottinga, Y. and Janoy, M. (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules. Annual Review of Earth and Planetary Sciences, v.5, p.65-110. https://doi.org/10.1146/annurev.ea.05.050177.000433
  99. Rose, A.W., Hawkes, H.E. and Webb, J.S. (1979) Geochemistry in mineral exploration. Second edition, Academic Press, New York. 633p. https://doi.org/10.1017/S0016756800029046
  100. Rouxel, O., Shanksiii, W., Bach, W. and Edwards, K. (2008) Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N. Chemical Geology, v.252, p.214-227. https://doi.org/10.1016/j.chemgeo.2008.03.009
  101. Rudnick, R.L., Tomascak, P.B., Njo, H.B. and Gardner, L.R. (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chemical Geology, v.212, p.45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008
  102. Sadeghi, M., Casey, P., Carranza, E.J.M. and Lynch, E.P. (2024) Principal components analysis and K-means clustering of till geochemical data: Mapping and targeting of prospective areas for lithium exploration in Vasternorrland Region, Sweden. Ore Geology Reviews, v.167, p.106002. https://doi.org/10.1016/j.oregeorev.2024.106002
  103. Schauble, E.A. (2004) Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy and Geochemistry, v.55, p.65-111. https://doi.org/10.2138/gsrmg.55.1.65
  104. Schnitzler, N., Ross, P.S. and Gloaguen, E. (2019) Using machine learning to estimate a key missing geochemical variable in mining exploration: Application of the Random Forest algorithm to multi-sensor core logging data. Journal of Geochemical Exploration, v.205, p.106344. https://doi.org/10.1016/j.gexplo.2019.106344
  105. Schwinn, G., Wagner, T., Baatartsogt, B., Markl, G., 2006. Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Acta, v.70, p.965-982. https://doi.org/10.1016/j.gca.2005.10.022
  106. Serban, A.C. and Lytras, M.D. (2020) Artificial intelligence for smart renewable energy sector in Europe-smart energy infrastructures for next generation smart cities. IEEE Access, v.8, p.77364-77377. https://doi.org/10.1109/ACCESS.2020.2990123
  107. Shaffique, S., Hussain, S., Kang, S.M., Imran, M., Kwon, E.H., Khan, M.A. and Lee, I.J. (2023) Recent progress on the microbial mitigation of heavy metal stress in soybean: overview and implications. Frontiers in Plant Science, v.14, p.1188856. https://doi.org/10.3389/fpls.2023.1188856
  108. Shaheen, S.M., Tsadilas, C.D. and Rinklebe, J. (2013) A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Advances in Colloid and Interface Science, v.201-202, p.43-56. https://doi.org/10.1016/j.cis.2013.10.005
  109. Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, v.105, p.3-41. https://doi.org/10.2113/gsecongeo.105.1.3
  110. Simmons, S.F., Sawkins, F.J. and Schlutter, D.J. (1987) Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature, v.329, p.429-432. https://doi.org/10.1038/329429a0
  111. Stefansson, A. (2017) Gas chemistry of Icelandic thermal fluids. Journal of Volcanology and Geothermal Research, v.346, p.81-94. https://doi.org/10.1016/j.jvolgeores.2017.04.002
  112. Sun, B., Liu, J., Wang, X., Dao, Y., Xu, G., Cui, X., Guan, X., Wang, W. and Song, D. (2019) Geochemical characteristics and genetic type of a lithium ore (mineralized) body in the central Yunnan Province, China. China Geology, v.2, p.287-300. https://doi.org/10.31035/cg2018118
  113. Szymanski, N.J., Rendy, B., Fei, Y., Kumar, R.E., He, T., Milsted, D., McDermott, M.J., Gallant, M., Cubuk, E.D., Merchant, A., Kim, H., Jain, A., Bartel, C.J., Persson, K., Zeng, Y. and Ceder, G. (2023) An autonomous laboratory for the accelerated synthesis of novel materials. Nature, v.624, p.86-91. https://doi.org/10.1038/s41586-023-06734-w
  114. Tao, Y., Shen, L., Feng, C., Yang, R., Qu, J., Ju, H. and Zhang, Y. (2022) Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environmental Pollution, v.298, p.118540. https://doi.org/10.1016/j.envpol.2021.118540
  115. Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W. and Gao, S. (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochimica et Cosmochimica Acta, v.68, p.4167-4178. https://doi.org/10.1016/j.gca.2004.03.031
  116. Tsutsumi, S. and Ishibashi, J.-i. (2022) Geochemical exploration: Application of fluid geochemistry to the utilization of geothermal energy. Journal of Geography (Chigaku Zasshi), v.131, p.597-607 (Japanese with english abstract). https://doi.org/10.5026/jgeography.131.597
  117. Wan, W., Wang, M., Hu, M. and Gao, Y. (2017) Identification of metal sources in Geogas from the Wangjiazhuang copper deposit, Shandong, China: Evidence from lead isotopes. Journal of Geochemical Exploration, v.172, p.167-173. https://doi.org/10.1016/j.gexplo.2016.10.008
  118. Wang, D.H., Dai, H.Z., Liu, S.B., Wang, C.H., Yu, Y., Dai, J.J., Liu, L.J., Yang, Y.Q. and Ma, S.C. (2020) Research and exploration progress on lithium deposits in China, China Geology, v.3, p.137-152. https://doi.org/10.31035/cg2020018
  119. Wang, M.Q. and Gao, Y.Y. (2007) Tracing source of geogas with lead isotopes: A case study in Jiaolongzhang Pb-Zn deposit, Gansu province. Geology, Environmental Science, v.36, p.391-399. (In Chinese with English Abstract)
  120. Wang, M.Q,, Gao Y.Y. and Liu, Y.H. (2008) Progress in the collection of Geogas in China. Geochemistry: Exploration, Environment, Analysis v.8, p.183-190. https://doi.org/10.1144/1467-7873/07-138
  121. Wang, Q., Wang, X., Cheng, Z., Zhang, B., Du, Z., Yan T, Yuan, H., Li, X., Qiao, Y. and Liu, H. (2023). Geogas-carried metal prospecting for concealed ore deposits: A review of case studies in China. Minerals, v.13, p.1553. https://doi.org/10.3390/min13121553
  122. Wang, X., Cheng, Z., Lu, Y., Xu, L. and Xie, X. (1997) Nanoscale metals in earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains. Journal of Geochemical Exploration. v.58, p.63-72. https://doi.org/10.1016/S0375-6742(96)00052-0
  123. Wang, X., Xie, X. and Lu, Y. (1995) Dynamic collection of geogas and its preliminary application in search for concealed deposits. Geophysical & Geochemical Exploration, v.19, p.161-171. (In Chinese with English Abstract)
  124. Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, v.59, p.1217-1232. https://doi.org/10.1016/j.gsf.2018.12.005
  125. Wiggenhauser, M., Moore, R.E.T., Wang, P., Bienert, G.P., Laursen, K.H. and Blotevogel, S. (2022) Stable isotope fractionation of metals and metalloids in plants: A Review. Frontiers in Plant Science, v.13. p.840941. https://doi.org/10.3389/fpls.2022.840941
  126. Xie, P., Hower, J.C., Nechaev, V.P., Ju, D. and Liu, X. (2021) Lithium and redox-sensitive (Ge, U, Mo, V) element mineralization in the Pennsylvanian coals from the Huangtupo coalfield, Shanxi, northern China: With emphasis on the interaction of infiltrating seawater and exfiltrating groundwater. Fuel, v.300, p.120948. https://doi.org/10.1016/j.fuel.2021.120948
  127. Xu, Z., Liang, B., Jiang, H., Liu, T., Wang, Q., Duan, J., Chen, B. and He, Y. (2024) Factor analysis of geogas data for concealed lithium deposits detection and false anomalies identification in Jiajika area. Journal of Geochemical Exploration, v.263, p.107511. https://doi.org/10.1016/j.gexplo.2024.107511
  128. Xuejing, X. and Xueqiu, W. (1991) Geochemical exploration for gold: a new approach to an old problem. Journal of Geochemical Exploration, v.40, p.25-48. https://doi.org/10.1016/0375-6742(91)90030-X
  129. Xueqiu, W., Bimin, Z., Xin, L., Shanfa, X., Wensheng, Y. and Rong, Y. (2016) Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China. Ore Geology Reviews, v.73, p.417-431. https://doi.org/10.1016/j.oregeorev.2015.08.015
  130. Yang, J., Zhou, S., Liu, X. and Hu, B. (2019) Geogas field characteristics of the Kaiu'an pegmatite lithium deposit and its prospecting significance. Acta Petrologica et Mineralogica, v.38, p.570-578. https://www.yskw.ac.cn/yskwxzzen/article/abstract/20190410
  131. Yang, Z., Wu, P., Fu, Y., Qiao, W., Qin, Y., Li, C., Xia, P., Guo, C., Long, X. and Wu, L. (2022) Coupling of the redox history and enrichment of Ni-Mo in black shale during the early Cambrian: Constraints from S-Fe isotopes and trace elements of pyrite, South China. Ore Geology Reviews, v.143, p.104749. https://doi.org/10.1016/j.oregeorev.2022.104749
  132. Yasukawa, K, and Noda, T. (2017) Geochemical criteria to evaluate hydraulic and thermal relationship between geochermal reservoir and nearby hot spring aquifer. Journal of the Geothermal Research Society of Japan. v.39, p.203-215. https://doi.org/10.11367/grsj.39.203
  133. Ye, R., Zhang, B. and Wang, Y. (2015) Mechanism of the migration of gold in desert regolith cover over a concealed gold deposit. Geochemistry: Exploration, Environment, Analysis, v.15, p.62-71. https://doi.org/10.1144/geochem2013-228
  134. Zeba, G., Dabic, M., Cicak, M., Daim, T. and Yalcin, H. (2021) Technology mining: Artificial intelligence in manufacturing. Technological Forecasting and Social Change, v.171, p.120971. https://doi.org/10.1016/j.techfore.2021.120971
  135. Zhai, M., Hu, R., Wang, Y., Jiang, S., Wang, R., Li, J., Chen, H., Yang, Z., Lu, Q., Qi, T., Shi, X., Li, Y., Liu, J., Li, Z. and Zhu, X. (2021) Mineral resource science in China: Review and perspective. Geography and Sustainability, v.2, p.107-114. https://doi.org/10.1016/j.geosus.2021.05.002
  136. Zhang, Y., Li, W. and Brzozowski, M.J. (2024) Dynamics of Cu isotope fractionation during the reactions of pyrite with Cu(I)-bearing hydrothermal fluids. Geochimica et Cosmochimica Acta, v.383, p.43-56. https://doi.org/10.1016/j.gca.2024.08.001
  137. Zheng, M., Xing, E., Zhang, X., Li, M., Che, D., Bu, L., Han, J. and Ye, C. (2023) Classification and mineralization of global lithium deposits and lithium extraction technologies for exogenetic lithium deposits. China Geology, v.6, p.547-566. https://doi.org/10.31035/cg2023061
  138. Zhou, J.M., Dang, Z., Cai, M.F. and Liu, C.Q. (2007) Soil heavy metal pollution around the Dabaoshan mine, Guangdong Province, China. Pedosphere, v.17, p.588-594. https://doi.org/10.1016/S1002-0160(07)60069-1
  139. Zuo, R., Xiong, Y., Wang, Z., Wang, J. and Kreuzer, O.P. (2023) A new generation of artificial intelligence algorithms for mineral prospectivity mapping: Natural Resources Research, v.32, p.1859-1869. https://doi.org/10.1007/s11053-023-10237-w