과제정보
본 연구는 2021년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행된 연구임(데이터 사이언스 기반 석유·가스 탐사 컨소시엄).
참고문헌
- Alzubaidi, F., Mostaghimi, P., Swietojanski, P., Clark, S.R. and Armstrong, R.T. (2021) Automated Lithology Classification from Drill Core Images Using Convolutional Neural Networks. Journal of Petroleum Science and Engineering, v.197, p.107933. doi: 10.1016/j.petrol.2020.107933.
- Bonassi, F., Farina, M., Xie, J. and Scattolini, R. (2022) On Recurrent Neural Networks for learning-based control: Recent results and ideas for future developments. Journal of Process Control, v.114, p.92-104. doi: 10.1016/j.jprocont.2022.04.011.
- Ghaemimood, S. (2021) Application of Text-Mining and Image Processing Techniques on Digitizing Drillers Logs and Developing Big Well Log Datasets (Master's thesis, Southern University and Agricultural and Mechanical College).
- Huang, G., Liu, Z., van der Maaten, L. and Weinberger, K.Q. (2017) Densely connected convolutional networks, In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 4700-4708. doi: 10.1109/cvpr.2017.243
- Jang. Y., Jeon. H., Chae, D. and Cho, W. (2013) A State-of-the-Practice Review on the Management of the Domestic Geotechnical and Geological Information Data, Journal of the Korean Geo-Environmental Society, v.14(4), p.39-46.
- Kim, J., Kim, W. and Choi, Y. (2018) Comparison of Drilling Practices for the Exploration of Non-metallic Mineral Resources in Korea and Overseas. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.55(3), p.219-225. doi: 10.32390/ksmer.2018.55.3.219.
- Kim, S., Suh, J., Roh, T.D., Hyun, C.U., Yi, H., Oh, S. and Park, H.D. (2013) Efficient management and application of National Borehole Data in Korea. Environmental & Engineering Geoscience, v.19(3), p.221-230. doi: 10.2113/gseegeosci.19.3.221.
- Lee, K., Lim, J., Yoon, D. and Jung, H. (2019) Prediction of Shale-Gas Production at Duvernay Formation Using Deep-Learning Algorithm. SPE Journal, v.24(6), p.2423-2437. doi: 10.2118/195698-PA.
- Qiu, Q., Tan, Y., Ma, K., Tian, M., Xie, Z. and Tao, L. (2023) Geological Symbol Recognition on Geological Map Using Convolutional Recurrent Neural Network With Augmented Data. Ore Geology Reviews, v.153, p.105262. doi: 10.1016/j.oregeorev.2022.105262.
- Pak, S., Koh, G., Park, J., Moon, D. and Yoon, W. (2015) Study of Geological Log Database for Public Wells, Jeju Island. Economic and Environmental Geology. The Korean Society of Economic and Environmental Geology, v.48(6), p.509-523. doi: 10.9719/eeg.2015.48.6.509.
- Park, K., Han, J. and Yoon, Y. (2021) A Study on the Automatic Digital DB of Boring Log Using AI. Journal of the Korean Geotechnical Society, v.37(11), p.119-129. doi: 10.7843/KGS.2021.37.11.119.
- Pham, C. and Shin, H. (2020) A Feasibility Study on Application of a Deep Convolutional Neural Network for Automatic Rock Type Classification. Tunnel and Underground Space, v.30(5), p.462-472. doi: 10.7474/TUS.2020.30.5.462.
- Saroji, S., Winata, E., Hidayat, P.P.W., Prakoso, S. and Herdiansyah, F. (2021) The Implemention of Machine Learning in Lothofacies Classification using Multi-well Logs Data. Aceh International Journal of Science and Technology, v.10(1), p.9-17. doi: 10.13170/aijst.10.1.18749.
- Sim, H., Jung, W., Hong, S., Seo, J., Park, C. and Song, Y. (2022) Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image. Korea Economic and Environmental Geology, v.55, p.309-316. doi: 10.9719/EEG2022.55.3.309.
- Simonyan, K. and Zisserman, A. (2014) Very deep convolutional networks for large-scale imge recognition, arXiv preprint, arXiv:1409.1556. doi: 10.48550/arXiv.1409.1556
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A. (2015) Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp.1-9. doi: 10.1109/cvpr.2015.7298594
- Tan, M. and Le, Q.V. (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Network. Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, 9-15 June 2019, p.6105-6114, http://proceedings.mlr.press/v97/tan19a.html.
- Yu, J., de Antonio, A. and Villalba-Mora, E. (2022) Deep Learning (CNN, RNN) Applications for Smart Homes: A Systematic Review. Computers, v.11(2), p.26. doi: 10.3390/computers11020026
- Zhang, J., Zhang, Y., Tian, Y., Liu, G., Xu, L., and Hu, Y. (2020) A Rapid Method for Information Extraction from Borehole Log Images. Applied Sciences, v.10(16), p.5520. doi: 10.3390/app10165520.